PNG  IHDRX cHRMz&u0`:pQ<bKGD pHYsodtIME MeqIDATxw]Wug^Qd˶ 6`!N:!@xI~)%7%@Bh&`lnjVF29gΨ4E$|>cɚ{gk= %,a KX%,a KX%,a KX%,a KX%,a KX%,a KX%, b` ǟzeאfp]<!SJmɤY޲ڿ,%c ~ع9VH.!Ͳz&QynֺTkRR.BLHi٪:l;@(!MԴ=žI,:o&N'Kù\vRmJ雵֫AWic H@" !: Cé||]k-Ha oݜ:y F())u]aG7*JV@J415p=sZH!=!DRʯvɱh~V\}v/GKY$n]"X"}t@ xS76^[bw4dsce)2dU0 CkMa-U5tvLƀ~mlMwfGE/-]7XAƟ`׮g ewxwC4\[~7@O-Q( a*XGƒ{ ՟}$_y3tĐƤatgvێi|K=uVyrŲlLӪuܿzwk$m87k( `múcE)"@rK( z4$D; 2kW=Xb$V[Ru819קR~qloѱDyįݎ*mxw]y5e4K@ЃI0A D@"BDk_)N\8͜9dz"fK0zɿvM /.:2O{ Nb=M=7>??Zuo32 DLD@D| &+֎C #B8ַ`bOb $D#ͮҪtx]%`ES`Ru[=¾!@Od37LJ0!OIR4m]GZRJu$‡c=%~s@6SKy?CeIh:[vR@Lh | (BhAMy=݃  G"'wzn޺~8ԽSh ~T*A:xR[ܹ?X[uKL_=fDȊ؂p0}7=D$Ekq!/t.*2ʼnDbŞ}DijYaȲ(""6HA;:LzxQ‘(SQQ}*PL*fc\s `/d'QXW, e`#kPGZuŞuO{{wm[&NBTiiI0bukcA9<4@SӊH*؎4U/'2U5.(9JuDfrޱtycU%j(:RUbArLֺN)udA':uGQN"-"Is.*+k@ `Ojs@yU/ H:l;@yyTn}_yw!VkRJ4P)~y#)r,D =ě"Q]ci'%HI4ZL0"MJy 8A{ aN<8D"1#IJi >XjX֔#@>-{vN!8tRݻ^)N_╗FJEk]CT՟ YP:_|H1@ CBk]yKYp|og?*dGvzنzӴzjֺNkC~AbZƷ`.H)=!QͷVTT(| u78y֮}|[8-Vjp%2JPk[}ԉaH8Wpqhwr:vWª<}l77_~{s۴V+RCģ%WRZ\AqHifɤL36: #F:p]Bq/z{0CU6ݳEv_^k7'>sq*+kH%a`0ԣisqにtү04gVgW΂iJiS'3w.w}l6MC2uԯ|>JF5`fV5m`Y**Db1FKNttu]4ccsQNnex/87+}xaUW9y>ͯ骵G{䩓Գ3+vU}~jJ.NFRD7<aJDB1#ҳgSb,+CS?/ VG J?|?,2#M9}B)MiE+G`-wo߫V`fio(}S^4e~V4bHOYb"b#E)dda:'?}׮4繏`{7Z"uny-?ǹ;0MKx{:_pÚmFמ:F " .LFQLG)Q8qN q¯¯3wOvxDb\. BKD9_NN &L:4D{mm o^tֽ:q!ƥ}K+<"m78N< ywsard5+вz~mnG)=}lYݧNj'QJS{S :UYS-952?&O-:W}(!6Mk4+>A>j+i|<<|;ر^߉=HE|V#F)Emm#}/"y GII웻Jі94+v뾧xu~5C95~ūH>c@덉pʃ1/4-A2G%7>m;–Y,cyyaln" ?ƻ!ʪ<{~h~i y.zZB̃/,雋SiC/JFMmBH&&FAbϓO^tubbb_hZ{_QZ-sύodFgO(6]TJA˯#`۶ɟ( %$&+V'~hiYy>922 Wp74Zkq+Ovn錄c>8~GqܲcWꂎz@"1A.}T)uiW4="jJ2W7mU/N0gcqܗOO}?9/wìXžΏ0 >֩(V^Rh32!Hj5`;O28؇2#ݕf3 ?sJd8NJ@7O0 b־?lldщ̡&|9C.8RTWwxWy46ah嘦mh٤&l zCy!PY?: CJyв]dm4ǜҐR޻RլhX{FƯanшQI@x' ao(kUUuxW_Ñ줮[w8 FRJ(8˼)_mQ _!RJhm=!cVmm ?sFOnll6Qk}alY}; "baӌ~M0w,Ggw2W:G/k2%R,_=u`WU R.9T"v,<\Ik޽/2110Ӿxc0gyC&Ny޽JҢrV6N ``یeA16"J³+Rj*;BϜkZPJaÍ<Jyw:NP8/D$ 011z֊Ⱳ3ι֘k1V_"h!JPIΣ'ɜ* aEAd:ݺ>y<}Lp&PlRfTb1]o .2EW\ͮ]38؋rTJsǏP@芎sF\> P^+dYJLbJ C-xϐn> ι$nj,;Ǖa FU *择|h ~izť3ᤓ`K'-f tL7JK+vf2)V'-sFuB4i+m+@My=O҈0"|Yxoj,3]:cо3 $#uŘ%Y"y죯LebqtҢVzq¼X)~>4L׶m~[1_k?kxֺQ`\ |ٛY4Ѯr!)N9{56(iNq}O()Em]=F&u?$HypWUeB\k]JɩSع9 Zqg4ZĊo oMcjZBU]B\TUd34ݝ~:7ڶSUsB0Z3srx 7`:5xcx !qZA!;%͚7&P H<WL!džOb5kF)xor^aujƍ7 Ǡ8/p^(L>ὴ-B,{ۇWzֺ^k]3\EE@7>lYBȝR.oHnXO/}sB|.i@ɥDB4tcm,@ӣgdtJ!lH$_vN166L__'Z)y&kH;:,Y7=J 9cG) V\hjiE;gya~%ks_nC~Er er)muuMg2;֫R)Md) ,¶ 2-wr#F7<-BBn~_(o=KO㭇[Xv eN_SMgSҐ BS헃D%g_N:/pe -wkG*9yYSZS.9cREL !k}<4_Xs#FmҶ:7R$i,fi!~' # !6/S6y@kZkZcX)%5V4P]VGYq%H1!;e1MV<!ϐHO021Dp= HMs~~a)ަu7G^];git!Frl]H/L$=AeUvZE4P\.,xi {-~p?2b#amXAHq)MWǾI_r`S Hz&|{ +ʖ_= (YS(_g0a03M`I&'9vl?MM+m~}*xT۲(fY*V4x@29s{DaY"toGNTO+xCAO~4Ϳ;p`Ѫ:>Ҵ7K 3}+0 387x\)a"/E>qpWB=1 ¨"MP(\xp߫́A3+J] n[ʼnӼaTbZUWb={~2ooKױӰp(CS\S筐R*JغV&&"FA}J>G֐p1ٸbk7 ŘH$JoN <8s^yk_[;gy-;߉DV{c B yce% aJhDȶ 2IdйIB/^n0tNtџdcKj4϶v~- CBcgqx9= PJ) dMsjpYB] GD4RDWX +h{y`,3ꊕ$`zj*N^TP4L:Iz9~6s) Ga:?y*J~?OrMwP\](21sZUD ?ܟQ5Q%ggW6QdO+\@ ̪X'GxN @'4=ˋ+*VwN ne_|(/BDfj5(Dq<*tNt1х!MV.C0 32b#?n0pzj#!38}޴o1KovCJ`8ŗ_"]] rDUy޲@ Ȗ-;xџ'^Y`zEd?0„ DAL18IS]VGq\4o !swV7ˣι%4FѮ~}6)OgS[~Q vcYbL!wG3 7띸*E Pql8=jT\꘿I(z<[6OrR8ºC~ډ]=rNl[g|v TMTղb-o}OrP^Q]<98S¤!k)G(Vkwyqyr޽Nv`N/e p/~NAOk \I:G6]4+K;j$R:Mi #*[AȚT,ʰ,;N{HZTGMoּy) ]%dHء9Պ䠬|<45,\=[bƟ8QXeB3- &dҩ^{>/86bXmZ]]yޚN[(WAHL$YAgDKp=5GHjU&99v簪C0vygln*P)9^͞}lMuiH!̍#DoRBn9l@ xA/_v=ȺT{7Yt2N"4!YN`ae >Q<XMydEB`VU}u]嫇.%e^ánE87Mu\t`cP=AD/G)sI"@MP;)]%fH9'FNsj1pVhY&9=0pfuJ&gޤx+k:!r˭wkl03׼Ku C &ѓYt{.O.zҏ z}/tf_wEp2gvX)GN#I ݭ߽v/ .& и(ZF{e"=V!{zW`, ]+LGz"(UJp|j( #V4, 8B 0 9OkRrlɱl94)'VH9=9W|>PS['G(*I1==C<5"Pg+x'K5EMd؞Af8lG ?D FtoB[je?{k3zQ vZ;%Ɠ,]E>KZ+T/ EJxOZ1i #T<@ I}q9/t'zi(EMqw`mYkU6;[t4DPeckeM;H}_g pMww}k6#H㶏+b8雡Sxp)&C $@'b,fPߑt$RbJ'vznuS ~8='72_`{q纶|Q)Xk}cPz9p7O:'|G~8wx(a 0QCko|0ASD>Ip=4Q, d|F8RcU"/KM opKle M3#i0c%<7׿p&pZq[TR"BpqauIp$ 8~Ĩ!8Սx\ւdT>>Z40ks7 z2IQ}ItԀ<-%S⍤};zIb$I 5K}Q͙D8UguWE$Jh )cu4N tZl+[]M4k8֦Zeq֮M7uIqG 1==tLtR,ƜSrHYt&QP윯Lg' I,3@P'}'R˪e/%-Auv·ñ\> vDJzlӾNv5:|K/Jb6KI9)Zh*ZAi`?S {aiVDԲuy5W7pWeQJk֤#5&V<̺@/GH?^τZL|IJNvI:'P=Ϛt"¨=cud S Q.Ki0 !cJy;LJR;G{BJy޺[^8fK6)=yʊ+(k|&xQ2`L?Ȓ2@Mf 0C`6-%pKpm')c$׻K5[J*U[/#hH!6acB JA _|uMvDyk y)6OPYjœ50VT K}cǻP[ $:]4MEA.y)|B)cf-A?(e|lɉ#P9V)[9t.EiQPDѠ3ϴ;E:+Օ t ȥ~|_N2,ZJLt4! %ա]u {+=p.GhNcŞQI?Nd'yeh n7zi1DB)1S | S#ًZs2|Ɛy$F SxeX{7Vl.Src3E℃Q>b6G ўYCmtկ~=K0f(=LrAS GN'ɹ9<\!a`)֕y[uՍ[09` 9 +57ts6}b4{oqd+J5fa/,97J#6yν99mRWxJyѡyu_TJc`~W>l^q#Ts#2"nD1%fS)FU w{ܯ R{ ˎ󅃏џDsZSQS;LV;7 Od1&1n$ N /.q3~eNɪ]E#oM~}v֯FڦwyZ=<<>Xo稯lfMFV6p02|*=tV!c~]fa5Y^Q_WN|Vs 0ҘދU97OI'N2'8N֭fgg-}V%y]U4 峧p*91#9U kCac_AFңĪy뚇Y_AiuYyTTYЗ-(!JFLt›17uTozc. S;7A&&<ԋ5y;Ro+:' *eYJkWR[@F %SHWP 72k4 qLd'J "zB6{AC0ƁA6U.'F3:Ȅ(9ΜL;D]m8ڥ9}dU "v!;*13Rg^fJyShyy5auA?ɩGHRjo^]׽S)Fm\toy 4WQS@mE#%5ʈfFYDX ~D5Ϡ9tE9So_aU4?Ѽm%&c{n>.KW1Tlb}:j uGi(JgcYj0qn+>) %\!4{LaJso d||u//P_y7iRJ߬nHOy) l+@$($VFIQ9%EeKʈU. ia&FY̒mZ=)+qqoQn >L!qCiDB;Y<%} OgBxB!ØuG)WG9y(Ą{_yesuZmZZey'Wg#C~1Cev@0D $a@˲(.._GimA:uyw֬%;@!JkQVM_Ow:P.s\)ot- ˹"`B,e CRtaEUP<0'}r3[>?G8xU~Nqu;Wm8\RIkբ^5@k+5(By'L&'gBJ3ݶ!/㮻w҅ yqPWUg<e"Qy*167΃sJ\oz]T*UQ<\FԎ`HaNmڜ6DysCask8wP8y9``GJ9lF\G g's Nn͵MLN֪u$| /|7=]O)6s !ĴAKh]q_ap $HH'\1jB^s\|- W1:=6lJBqjY^LsPk""`]w)󭃈,(HC ?䔨Y$Sʣ{4Z+0NvQkhol6C.婧/u]FwiVjZka&%6\F*Ny#8O,22+|Db~d ~Çwc N:FuuCe&oZ(l;@ee-+Wn`44AMK➝2BRՈt7g*1gph9N) *"TF*R(#'88pm=}X]u[i7bEc|\~EMn}P瘊J)K.0i1M6=7'_\kaZ(Th{K*GJyytw"IO-PWJk)..axӝ47"89Cc7ĐBiZx 7m!fy|ϿF9CbȩV 9V-՛^pV̌ɄS#Bv4-@]Vxt-Z, &ֺ*diؠ2^VXbs֔Ìl.jQ]Y[47gj=幽ex)A0ip׳ W2[ᎇhuE^~q흙L} #-b۸oFJ_QP3r6jr+"nfzRJTUqoaۍ /$d8Mx'ݓ= OՃ| )$2mcM*cЙj}f };n YG w0Ia!1Q.oYfr]DyISaP}"dIӗթO67jqR ҊƐƈaɤGG|h;t]䗖oSv|iZqX)oalv;۩meEJ\!8=$4QU4Xo&VEĊ YS^E#d,yX_> ۘ-e\ "Wa6uLĜZi`aD9.% w~mB(02G[6y.773a7 /=o7D)$Z 66 $bY^\CuP. (x'"J60׿Y:Oi;F{w佩b+\Yi`TDWa~|VH)8q/=9!g߆2Y)?ND)%?Ǐ`k/sn:;O299yB=a[Ng 3˲N}vLNy;*?x?~L&=xyӴ~}q{qE*IQ^^ͧvü{Huu=R|>JyUlZV, B~/YF!Y\u_ݼF{_C)LD]m {H 0ihhadd nUkf3oٺCvE\)QJi+֥@tDJkB$1!Đr0XQ|q?d2) Ӣ_}qv-< FŊ߫%roppVBwü~JidY4:}L6M7f٬F "?71<2#?Jyy4뷢<_a7_=Q E=S1И/9{+93֮E{ǂw{))?maÆm(uLE#lïZ  ~d];+]h j?!|$F}*"4(v'8s<ŏUkm7^7no1w2ؗ}TrͿEk>p'8OB7d7R(A 9.*Mi^ͳ; eeUwS+C)uO@ =Sy]` }l8^ZzRXj[^iUɺ$tj))<sbDJfg=Pk_{xaKo1:-uyG0M ԃ\0Lvuy'ȱc2Ji AdyVgVh!{]/&}}ċJ#%d !+87<;qN޼Nفl|1N:8ya  8}k¾+-$4FiZYÔXk*I&'@iI99)HSh4+2G:tGhS^繿 Kتm0 вDk}֚+QT4;sC}rՅE,8CX-e~>G&'9xpW,%Fh,Ry56Y–hW-(v_,? ; qrBk4-V7HQ;ˇ^Gv1JVV%,ik;D_W!))+BoS4QsTM;gt+ndS-~:11Sgv!0qRVh!"Ȋ(̦Yl.]PQWgٳE'`%W1{ndΗBk|Ž7ʒR~,lnoa&:ü$ 3<a[CBݮwt"o\ePJ=Hz"_c^Z.#ˆ*x z̝grY]tdkP*:97YľXyBkD4N.C_[;F9`8& !AMO c `@BA& Ost\-\NX+Xp < !bj3C&QL+*&kAQ=04}cC!9~820G'PC9xa!w&bo_1 Sw"ܱ V )Yl3+ס2KoXOx]"`^WOy :3GO0g;%Yv㐫(R/r (s } u B &FeYZh0y> =2<Ϟc/ -u= c&׭,.0"g"7 6T!vl#sc>{u/Oh Bᾈ)۴74]x7 gMӒ"d]U)}" v4co[ ɡs 5Gg=XR14?5A}D "b{0$L .\4y{_fe:kVS\\O]c^W52LSBDM! C3Dhr̦RtArx4&agaN3Cf<Ԉp4~ B'"1@.b_/xQ} _߃҉/gٓ2Qkqp0շpZ2fԫYz< 4L.Cyυι1t@鎫Fe sYfsF}^ V}N<_`p)alٶ "(XEAVZ<)2},:Ir*#m_YӼ R%a||EƼIJ,,+f"96r/}0jE/)s)cjW#w'Sʯ5<66lj$a~3Kʛy 2:cZ:Yh))+a߭K::N,Q F'qB]={.]h85C9cr=}*rk?vwV렵ٸW Rs%}rNAkDv|uFLBkWY YkX מ|)1!$#3%y?pF<@<Rr0}: }\J [5FRxY<9"SQdE(Q*Qʻ)q1E0B_O24[U'],lOb ]~WjHޏTQ5Syu wq)xnw8~)c 쫬gٲߠ H% k5dƝk> kEj,0% b"vi2Wس_CuK)K{n|>t{P1򨾜j>'kEkƗBg*H%'_aY6Bn!TL&ɌOb{c`'d^{t\i^[uɐ[}q0lM˕G:‚4kb祔c^:?bpg… +37stH:0}en6x˟%/<]BL&* 5&fK9Mq)/iyqtA%kUe[ڛKN]Ě^,"`/ s[EQQm?|XJ߅92m]G.E΃ח U*Cn.j_)Tѧj̿30ڇ!A0=͜ar I3$C^-9#|pk!)?7.x9 @OO;WƝZBFU keZ75F6Tc6"ZȚs2y/1 ʵ:u4xa`C>6Rb/Yм)^=+~uRd`/|_8xbB0?Ft||Z\##|K 0>>zxv8۴吅q 8ĥ)"6>~\8:qM}#͚'ĉ#p\׶ l#bA?)|g g9|8jP(cr,BwV (WliVxxᡁ@0Okn;ɥh$_ckCgriv}>=wGzβ KkBɛ[˪ !J)h&k2%07δt}!d<9;I&0wV/ v 0<H}L&8ob%Hi|޶o&h1L|u֦y~󛱢8fٲUsւ)0oiFx2}X[zVYr_;N(w]_4B@OanC?gĦx>мgx>ΛToZoOMp>40>V Oy V9iq!4 LN,ˢu{jsz]|"R޻&'ƚ{53ўFu(<٪9:΋]B;)B>1::8;~)Yt|0(pw2N%&X,URBK)3\zz&}ax4;ǟ(tLNg{N|Ǽ\G#C9g$^\}p?556]/RP.90 k,U8/u776s ʪ_01چ|\N 0VV*3H鴃J7iI!wG_^ypl}r*jɤSR 5QN@ iZ#1ٰy;_\3\BQQ x:WJv츟ٯ$"@6 S#qe딇(/P( Dy~TOϻ<4:-+F`0||;Xl-"uw$Цi󼕝mKʩorz"mϺ$F:~E'ҐvD\y?Rr8_He@ e~O,T.(ފR*cY^m|cVR[8 JҡSm!ΆԨb)RHG{?MpqrmN>߶Y)\p,d#xۆWY*,l6]v0h15M˙MS8+EdI='LBJIH7_9{Caз*Lq,dt >+~ّeʏ?xԕ4bBAŚjﵫ!'\Ը$WNvKO}ӽmSşذqsOy?\[,d@'73'j%kOe`1.g2"e =YIzS2|zŐƄa\U,dP;jhhhaxǶ?КZ՚.q SE+XrbOu%\GتX(H,N^~]JyEZQKceTQ]VGYqnah;y$cQahT&QPZ*iZ8UQQM.qo/T\7X"u?Mttl2Xq(IoW{R^ ux*SYJ! 4S.Jy~ BROS[V|žKNɛP(L6V^|cR7i7nZW1Fd@ Ara{詑|(T*dN]Ko?s=@ |_EvF]׍kR)eBJc" MUUbY6`~V޴dJKß&~'d3i WWWWWW
Current Directory: /usr/share/ruby
Viewing File: /usr/share/ruby/tsort.rb
# frozen_string_literal: true #-- # tsort.rb - provides a module for topological sorting and strongly connected components. #++ # # # TSort implements topological sorting using Tarjan's algorithm for # strongly connected components. # # TSort is designed to be able to be used with any object which can be # interpreted as a directed graph. # # TSort requires two methods to interpret an object as a graph, # tsort_each_node and tsort_each_child. # # * tsort_each_node is used to iterate for all nodes over a graph. # * tsort_each_child is used to iterate for child nodes of a given node. # # The equality of nodes are defined by eql? and hash since # TSort uses Hash internally. # # == A Simple Example # # The following example demonstrates how to mix the TSort module into an # existing class (in this case, Hash). Here, we're treating each key in # the hash as a node in the graph, and so we simply alias the required # #tsort_each_node method to Hash's #each_key method. For each key in the # hash, the associated value is an array of the node's child nodes. This # choice in turn leads to our implementation of the required #tsort_each_child # method, which fetches the array of child nodes and then iterates over that # array using the user-supplied block. # # require 'tsort' # # class Hash # include TSort # alias tsort_each_node each_key # def tsort_each_child(node, &block) # fetch(node).each(&block) # end # end # # {1=>[2, 3], 2=>[3], 3=>[], 4=>[]}.tsort # #=> [3, 2, 1, 4] # # {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}.strongly_connected_components # #=> [[4], [2, 3], [1]] # # == A More Realistic Example # # A very simple `make' like tool can be implemented as follows: # # require 'tsort' # # class Make # def initialize # @dep = {} # @dep.default = [] # end # # def rule(outputs, inputs=[], &block) # triple = [outputs, inputs, block] # outputs.each {|f| @dep[f] = [triple]} # @dep[triple] = inputs # end # # def build(target) # each_strongly_connected_component_from(target) {|ns| # if ns.length != 1 # fs = ns.delete_if {|n| Array === n} # raise TSort::Cyclic.new("cyclic dependencies: #{fs.join ', '}") # end # n = ns.first # if Array === n # outputs, inputs, block = n # inputs_time = inputs.map {|f| File.mtime f}.max # begin # outputs_time = outputs.map {|f| File.mtime f}.min # rescue Errno::ENOENT # outputs_time = nil # end # if outputs_time == nil || # inputs_time != nil && outputs_time <= inputs_time # sleep 1 if inputs_time != nil && inputs_time.to_i == Time.now.to_i # block.call # end # end # } # end # # def tsort_each_child(node, &block) # @dep[node].each(&block) # end # include TSort # end # # def command(arg) # print arg, "\n" # system arg # end # # m = Make.new # m.rule(%w[t1]) { command 'date > t1' } # m.rule(%w[t2]) { command 'date > t2' } # m.rule(%w[t3]) { command 'date > t3' } # m.rule(%w[t4], %w[t1 t3]) { command 'cat t1 t3 > t4' } # m.rule(%w[t5], %w[t4 t2]) { command 'cat t4 t2 > t5' } # m.build('t5') # # == Bugs # # * 'tsort.rb' is wrong name because this library uses # Tarjan's algorithm for strongly connected components. # Although 'strongly_connected_components.rb' is correct but too long. # # == References # # R. E. Tarjan, "Depth First Search and Linear Graph Algorithms", # <em>SIAM Journal on Computing</em>, Vol. 1, No. 2, pp. 146-160, June 1972. # module TSort class Cyclic < StandardError end # Returns a topologically sorted array of nodes. # The array is sorted from children to parents, i.e. # the first element has no child and the last node has no parent. # # If there is a cycle, TSort::Cyclic is raised. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # p graph.tsort #=> [4, 2, 3, 1] # # graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) # p graph.tsort # raises TSort::Cyclic # def tsort each_node = method(:tsort_each_node) each_child = method(:tsort_each_child) TSort.tsort(each_node, each_child) end # Returns a topologically sorted array of nodes. # The array is sorted from children to parents, i.e. # the first element has no child and the last node has no parent. # # The graph is represented by _each_node_ and _each_child_. # _each_node_ should have +call+ method which yields for each node in the graph. # _each_child_ should have +call+ method which takes a node argument and yields for each child node. # # If there is a cycle, TSort::Cyclic is raised. # # g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # p TSort.tsort(each_node, each_child) #=> [4, 2, 3, 1] # # g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # p TSort.tsort(each_node, each_child) # raises TSort::Cyclic # def TSort.tsort(each_node, each_child) TSort.tsort_each(each_node, each_child).to_a end # The iterator version of the #tsort method. # <tt><em>obj</em>.tsort_each</tt> is similar to <tt><em>obj</em>.tsort.each</tt>, but # modification of _obj_ during the iteration may lead to unexpected results. # # #tsort_each returns +nil+. # If there is a cycle, TSort::Cyclic is raised. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # graph.tsort_each {|n| p n } # #=> 4 # # 2 # # 3 # # 1 # def tsort_each(&block) # :yields: node each_node = method(:tsort_each_node) each_child = method(:tsort_each_child) TSort.tsort_each(each_node, each_child, &block) end # The iterator version of the TSort.tsort method. # # The graph is represented by _each_node_ and _each_child_. # _each_node_ should have +call+ method which yields for each node in the graph. # _each_child_ should have +call+ method which takes a node argument and yields for each child node. # # g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # TSort.tsort_each(each_node, each_child) {|n| p n } # #=> 4 # # 2 # # 3 # # 1 # def TSort.tsort_each(each_node, each_child) # :yields: node return to_enum(__method__, each_node, each_child) unless block_given? TSort.each_strongly_connected_component(each_node, each_child) {|component| if component.size == 1 yield component.first else raise Cyclic.new("topological sort failed: #{component.inspect}") end } end # Returns strongly connected components as an array of arrays of nodes. # The array is sorted from children to parents. # Each elements of the array represents a strongly connected component. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # p graph.strongly_connected_components #=> [[4], [2], [3], [1]] # # graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) # p graph.strongly_connected_components #=> [[4], [2, 3], [1]] # def strongly_connected_components each_node = method(:tsort_each_node) each_child = method(:tsort_each_child) TSort.strongly_connected_components(each_node, each_child) end # Returns strongly connected components as an array of arrays of nodes. # The array is sorted from children to parents. # Each elements of the array represents a strongly connected component. # # The graph is represented by _each_node_ and _each_child_. # _each_node_ should have +call+ method which yields for each node in the graph. # _each_child_ should have +call+ method which takes a node argument and yields for each child node. # # g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # p TSort.strongly_connected_components(each_node, each_child) # #=> [[4], [2], [3], [1]] # # g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # p TSort.strongly_connected_components(each_node, each_child) # #=> [[4], [2, 3], [1]] # def TSort.strongly_connected_components(each_node, each_child) TSort.each_strongly_connected_component(each_node, each_child).to_a end # The iterator version of the #strongly_connected_components method. # <tt><em>obj</em>.each_strongly_connected_component</tt> is similar to # <tt><em>obj</em>.strongly_connected_components.each</tt>, but # modification of _obj_ during the iteration may lead to unexpected results. # # #each_strongly_connected_component returns +nil+. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # graph.each_strongly_connected_component {|scc| p scc } # #=> [4] # # [2] # # [3] # # [1] # # graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) # graph.each_strongly_connected_component {|scc| p scc } # #=> [4] # # [2, 3] # # [1] # def each_strongly_connected_component(&block) # :yields: nodes each_node = method(:tsort_each_node) each_child = method(:tsort_each_child) TSort.each_strongly_connected_component(each_node, each_child, &block) end # The iterator version of the TSort.strongly_connected_components method. # # The graph is represented by _each_node_ and _each_child_. # _each_node_ should have +call+ method which yields for each node in the graph. # _each_child_ should have +call+ method which takes a node argument and yields for each child node. # # g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc } # #=> [4] # # [2] # # [3] # # [1] # # g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} # each_node = lambda {|&b| g.each_key(&b) } # each_child = lambda {|n, &b| g[n].each(&b) } # TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc } # #=> [4] # # [2, 3] # # [1] # def TSort.each_strongly_connected_component(each_node, each_child) # :yields: nodes return to_enum(__method__, each_node, each_child) unless block_given? id_map = {} stack = [] each_node.call {|node| unless id_map.include? node TSort.each_strongly_connected_component_from(node, each_child, id_map, stack) {|c| yield c } end } nil end # Iterates over strongly connected component in the subgraph reachable from # _node_. # # Return value is unspecified. # # #each_strongly_connected_component_from doesn't call #tsort_each_node. # # class G # include TSort # def initialize(g) # @g = g # end # def tsort_each_child(n, &b) @g[n].each(&b) end # def tsort_each_node(&b) @g.each_key(&b) end # end # # graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) # graph.each_strongly_connected_component_from(2) {|scc| p scc } # #=> [4] # # [2] # # graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) # graph.each_strongly_connected_component_from(2) {|scc| p scc } # #=> [4] # # [2, 3] # def each_strongly_connected_component_from(node, id_map={}, stack=[], &block) # :yields: nodes TSort.each_strongly_connected_component_from(node, method(:tsort_each_child), id_map, stack, &block) end # Iterates over strongly connected components in a graph. # The graph is represented by _node_ and _each_child_. # # _node_ is the first node. # _each_child_ should have +call+ method which takes a node argument # and yields for each child node. # # Return value is unspecified. # # #TSort.each_strongly_connected_component_from is a class method and # it doesn't need a class to represent a graph which includes TSort. # # graph = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} # each_child = lambda {|n, &b| graph[n].each(&b) } # TSort.each_strongly_connected_component_from(1, each_child) {|scc| # p scc # } # #=> [4] # # [2, 3] # # [1] # def TSort.each_strongly_connected_component_from(node, each_child, id_map={}, stack=[]) # :yields: nodes return to_enum(__method__, node, each_child, id_map, stack) unless block_given? minimum_id = node_id = id_map[node] = id_map.size stack_length = stack.length stack << node each_child.call(node) {|child| if id_map.include? child child_id = id_map[child] minimum_id = child_id if child_id && child_id < minimum_id else sub_minimum_id = TSort.each_strongly_connected_component_from(child, each_child, id_map, stack) {|c| yield c } minimum_id = sub_minimum_id if sub_minimum_id < minimum_id end } if node_id == minimum_id component = stack.slice!(stack_length .. -1) component.each {|n| id_map[n] = nil} yield component end minimum_id end # Should be implemented by a extended class. # # #tsort_each_node is used to iterate for all nodes over a graph. # def tsort_each_node # :yields: node raise NotImplementedError.new end # Should be implemented by a extended class. # # #tsort_each_child is used to iterate for child nodes of _node_. # def tsort_each_child(node) # :yields: child raise NotImplementedError.new end end