PNG  IHDRX cHRMz&u0`:pQ<bKGD pHYsodtIME MeqIDATxw]Wug^Qd˶ 6`!N:!@xI~)%7%@Bh&`lnjVF29gΨ4E$|>cɚ{gk= %,a KX%,a KX%,a KX%,a KX%,a KX%,a KX%, b` ǟzeאfp]<!SJmɤY޲ڿ,%c ~ع9VH.!Ͳz&QynֺTkRR.BLHi٪:l;@(!MԴ=žI,:o&N'Kù\vRmJ雵֫AWic H@" !: Cé||]k-Ha oݜ:y F())u]aG7*JV@J415p=sZH!=!DRʯvɱh~V\}v/GKY$n]"X"}t@ xS76^[bw4dsce)2dU0 CkMa-U5tvLƀ~mlMwfGE/-]7XAƟ`׮g ewxwC4\[~7@O-Q( a*XGƒ{ ՟}$_y3tĐƤatgvێi|K=uVyrŲlLӪuܿzwk$m87k( `múcE)"@rK( z4$D; 2kW=Xb$V[Ru819קR~qloѱDyįݎ*mxw]y5e4K@ЃI0A D@"BDk_)N\8͜9dz"fK0zɿvM /.:2O{ Nb=M=7>??Zuo32 DLD@D| &+֎C #B8ַ`bOb $D#ͮҪtx]%`ES`Ru[=¾!@Od37LJ0!OIR4m]GZRJu$‡c=%~s@6SKy?CeIh:[vR@Lh | (BhAMy=݃  G"'wzn޺~8ԽSh ~T*A:xR[ܹ?X[uKL_=fDȊ؂p0}7=D$Ekq!/t.*2ʼnDbŞ}DijYaȲ(""6HA;:LzxQ‘(SQQ}*PL*fc\s `/d'QXW, e`#kPGZuŞuO{{wm[&NBTiiI0bukcA9<4@SӊH*؎4U/'2U5.(9JuDfrޱtycU%j(:RUbArLֺN)udA':uGQN"-"Is.*+k@ `Ojs@yU/ H:l;@yyTn}_yw!VkRJ4P)~y#)r,D =ě"Q]ci'%HI4ZL0"MJy 8A{ aN<8D"1#IJi >XjX֔#@>-{vN!8tRݻ^)N_╗FJEk]CT՟ YP:_|H1@ CBk]yKYp|og?*dGvzنzӴzjֺNkC~AbZƷ`.H)=!QͷVTT(| u78y֮}|[8-Vjp%2JPk[}ԉaH8Wpqhwr:vWª<}l77_~{s۴V+RCģ%WRZ\AqHifɤL36: #F:p]Bq/z{0CU6ݳEv_^k7'>sq*+kH%a`0ԣisqにtү04gVgW΂iJiS'3w.w}l6MC2uԯ|>JF5`fV5m`Y**Db1FKNttu]4ccsQNnex/87+}xaUW9y>ͯ骵G{䩓Գ3+vU}~jJ.NFRD7<aJDB1#ҳgSb,+CS?/ VG J?|?,2#M9}B)MiE+G`-wo߫V`fio(}S^4e~V4bHOYb"b#E)dda:'?}׮4繏`{7Z"uny-?ǹ;0MKx{:_pÚmFמ:F " .LFQLG)Q8qN q¯¯3wOvxDb\. BKD9_NN &L:4D{mm o^tֽ:q!ƥ}K+<"m78N< ywsard5+вz~mnG)=}lYݧNj'QJS{S :UYS-952?&O-:W}(!6Mk4+>A>j+i|<<|;ر^߉=HE|V#F)Emm#}/"y GII웻Jі94+v뾧xu~5C95~ūH>c@덉pʃ1/4-A2G%7>m;–Y,cyyaln" ?ƻ!ʪ<{~h~i y.zZB̃/,雋SiC/JFMmBH&&FAbϓO^tubbb_hZ{_QZ-sύodFgO(6]TJA˯#`۶ɟ( %$&+V'~hiYy>922 Wp74Zkq+Ovn錄c>8~GqܲcWꂎz@"1A.}T)uiW4="jJ2W7mU/N0gcqܗOO}?9/wìXžΏ0 >֩(V^Rh32!Hj5`;O28؇2#ݕf3 ?sJd8NJ@7O0 b־?lldщ̡&|9C.8RTWwxWy46ah嘦mh٤&l zCy!PY?: CJyв]dm4ǜҐR޻RլhX{FƯanшQI@x' ao(kUUuxW_Ñ줮[w8 FRJ(8˼)_mQ _!RJhm=!cVmm ?sFOnll6Qk}alY}; "baӌ~M0w,Ggw2W:G/k2%R,_=u`WU R.9T"v,<\Ik޽/2110Ӿxc0gyC&Ny޽JҢrV6N ``یeA16"J³+Rj*;BϜkZPJaÍ<Jyw:NP8/D$ 011z֊Ⱳ3ι֘k1V_"h!JPIΣ'ɜ* aEAd:ݺ>y<}Lp&PlRfTb1]o .2EW\ͮ]38؋rTJsǏP@芎sF\> P^+dYJLbJ C-xϐn> ι$nj,;Ǖa FU *择|h ~izť3ᤓ`K'-f tL7JK+vf2)V'-sFuB4i+m+@My=O҈0"|Yxoj,3]:cо3 $#uŘ%Y"y죯LebqtҢVzq¼X)~>4L׶m~[1_k?kxֺQ`\ |ٛY4Ѯr!)N9{56(iNq}O()Em]=F&u?$HypWUeB\k]JɩSع9 Zqg4ZĊo oMcjZBU]B\TUd34ݝ~:7ڶSUsB0Z3srx 7`:5xcx !qZA!;%͚7&P H<WL!džOb5kF)xor^aujƍ7 Ǡ8/p^(L>ὴ-B,{ۇWzֺ^k]3\EE@7>lYBȝR.oHnXO/}sB|.i@ɥDB4tcm,@ӣgdtJ!lH$_vN166L__'Z)y&kH;:,Y7=J 9cG) V\hjiE;gya~%ks_nC~Er er)muuMg2;֫R)Md) ,¶ 2-wr#F7<-BBn~_(o=KO㭇[Xv eN_SMgSҐ BS헃D%g_N:/pe -wkG*9yYSZS.9cREL !k}<4_Xs#FmҶ:7R$i,fi!~' # !6/S6y@kZkZcX)%5V4P]VGYq%H1!;e1MV<!ϐHO021Dp= HMs~~a)ަu7G^];git!Frl]H/L$=AeUvZE4P\.,xi {-~p?2b#amXAHq)MWǾI_r`S Hz&|{ +ʖ_= (YS(_g0a03M`I&'9vl?MM+m~}*xT۲(fY*V4x@29s{DaY"toGNTO+xCAO~4Ϳ;p`Ѫ:>Ҵ7K 3}+0 387x\)a"/E>qpWB=1 ¨"MP(\xp߫́A3+J] n[ʼnӼaTbZUWb={~2ooKױӰp(CS\S筐R*JغV&&"FA}J>G֐p1ٸbk7 ŘH$JoN <8s^yk_[;gy-;߉DV{c B yce% aJhDȶ 2IdйIB/^n0tNtџdcKj4϶v~- CBcgqx9= PJ) dMsjpYB] GD4RDWX +h{y`,3ꊕ$`zj*N^TP4L:Iz9~6s) Ga:?y*J~?OrMwP\](21sZUD ?ܟQ5Q%ggW6QdO+\@ ̪X'GxN @'4=ˋ+*VwN ne_|(/BDfj5(Dq<*tNt1х!MV.C0 32b#?n0pzj#!38}޴o1KovCJ`8ŗ_"]] rDUy޲@ Ȗ-;xџ'^Y`zEd?0„ DAL18IS]VGq\4o !swV7ˣι%4FѮ~}6)OgS[~Q vcYbL!wG3 7띸*E Pql8=jT\꘿I(z<[6OrR8ºC~ډ]=rNl[g|v TMTղb-o}OrP^Q]<98S¤!k)G(Vkwyqyr޽Nv`N/e p/~NAOk \I:G6]4+K;j$R:Mi #*[AȚT,ʰ,;N{HZTGMoּy) ]%dHء9Պ䠬|<45,\=[bƟ8QXeB3- &dҩ^{>/86bXmZ]]yޚN[(WAHL$YAgDKp=5GHjU&99v簪C0vygln*P)9^͞}lMuiH!̍#DoRBn9l@ xA/_v=ȺT{7Yt2N"4!YN`ae >Q<XMydEB`VU}u]嫇.%e^ánE87Mu\t`cP=AD/G)sI"@MP;)]%fH9'FNsj1pVhY&9=0pfuJ&gޤx+k:!r˭wkl03׼Ku C &ѓYt{.O.zҏ z}/tf_wEp2gvX)GN#I ݭ߽v/ .& и(ZF{e"=V!{zW`, ]+LGz"(UJp|j( #V4, 8B 0 9OkRrlɱl94)'VH9=9W|>PS['G(*I1==C<5"Pg+x'K5EMd؞Af8lG ?D FtoB[je?{k3zQ vZ;%Ɠ,]E>KZ+T/ EJxOZ1i #T<@ I}q9/t'zi(EMqw`mYkU6;[t4DPeckeM;H}_g pMww}k6#H㶏+b8雡Sxp)&C $@'b,fPߑt$RbJ'vznuS ~8='72_`{q纶|Q)Xk}cPz9p7O:'|G~8wx(a 0QCko|0ASD>Ip=4Q, d|F8RcU"/KM opKle M3#i0c%<7׿p&pZq[TR"BpqauIp$ 8~Ĩ!8Սx\ւdT>>Z40ks7 z2IQ}ItԀ<-%S⍤};zIb$I 5K}Q͙D8UguWE$Jh )cu4N tZl+[]M4k8֦Zeq֮M7uIqG 1==tLtR,ƜSrHYt&QP윯Lg' I,3@P'}'R˪e/%-Auv·ñ\> vDJzlӾNv5:|K/Jb6KI9)Zh*ZAi`?S {aiVDԲuy5W7pWeQJk֤#5&V<̺@/GH?^τZL|IJNvI:'P=Ϛt"¨=cud S Q.Ki0 !cJy;LJR;G{BJy޺[^8fK6)=yʊ+(k|&xQ2`L?Ȓ2@Mf 0C`6-%pKpm')c$׻K5[J*U[/#hH!6acB JA _|uMvDyk y)6OPYjœ50VT K}cǻP[ $:]4MEA.y)|B)cf-A?(e|lɉ#P9V)[9t.EiQPDѠ3ϴ;E:+Օ t ȥ~|_N2,ZJLt4! %ա]u {+=p.GhNcŞQI?Nd'yeh n7zi1DB)1S | S#ًZs2|Ɛy$F SxeX{7Vl.Src3E℃Q>b6G ўYCmtկ~=K0f(=LrAS GN'ɹ9<\!a`)֕y[uՍ[09` 9 +57ts6}b4{oqd+J5fa/,97J#6yν99mRWxJyѡyu_TJc`~W>l^q#Ts#2"nD1%fS)FU w{ܯ R{ ˎ󅃏џDsZSQS;LV;7 Od1&1n$ N /.q3~eNɪ]E#oM~}v֯FڦwyZ=<<>Xo稯lfMFV6p02|*=tV!c~]fa5Y^Q_WN|Vs 0ҘދU97OI'N2'8N֭fgg-}V%y]U4 峧p*91#9U kCac_AFңĪy뚇Y_AiuYyTTYЗ-(!JFLt›17uTozc. S;7A&&<ԋ5y;Ro+:' *eYJkWR[@F %SHWP 72k4 qLd'J "zB6{AC0ƁA6U.'F3:Ȅ(9ΜL;D]m8ڥ9}dU "v!;*13Rg^fJyShyy5auA?ɩGHRjo^]׽S)Fm\toy 4WQS@mE#%5ʈfFYDX ~D5Ϡ9tE9So_aU4?Ѽm%&c{n>.KW1Tlb}:j uGi(JgcYj0qn+>) %\!4{LaJso d||u//P_y7iRJ߬nHOy) l+@$($VFIQ9%EeKʈU. ia&FY̒mZ=)+qqoQn >L!qCiDB;Y<%} OgBxB!ØuG)WG9y(Ą{_yesuZmZZey'Wg#C~1Cev@0D $a@˲(.._GimA:uyw֬%;@!JkQVM_Ow:P.s\)ot- ˹"`B,e CRtaEUP<0'}r3[>?G8xU~Nqu;Wm8\RIkբ^5@k+5(By'L&'gBJ3ݶ!/㮻w҅ yqPWUg<e"Qy*167΃sJ\oz]T*UQ<\FԎ`HaNmڜ6DysCask8wP8y9``GJ9lF\G g's Nn͵MLN֪u$| /|7=]O)6s !ĴAKh]q_ap $HH'\1jB^s\|- W1:=6lJBqjY^LsPk""`]w)󭃈,(HC ?䔨Y$Sʣ{4Z+0NvQkhol6C.婧/u]FwiVjZka&%6\F*Ny#8O,22+|Db~d ~Çwc N:FuuCe&oZ(l;@ee-+Wn`44AMK➝2BRՈt7g*1gph9N) *"TF*R(#'88pm=}X]u[i7bEc|\~EMn}P瘊J)K.0i1M6=7'_\kaZ(Th{K*GJyytw"IO-PWJk)..axӝ47"89Cc7ĐBiZx 7m!fy|ϿF9CbȩV 9V-՛^pV̌ɄS#Bv4-@]Vxt-Z, &ֺ*diؠ2^VXbs֔Ìl.jQ]Y[47gj=幽ex)A0ip׳ W2[ᎇhuE^~q흙L} #-b۸oFJ_QP3r6jr+"nfzRJTUqoaۍ /$d8Mx'ݓ= OՃ| )$2mcM*cЙj}f };n YG w0Ia!1Q.oYfr]DyISaP}"dIӗթO67jqR ҊƐƈaɤGG|h;t]䗖oSv|iZqX)oalv;۩meEJ\!8=$4QU4Xo&VEĊ YS^E#d,yX_> ۘ-e\ "Wa6uLĜZi`aD9.% w~mB(02G[6y.773a7 /=o7D)$Z 66 $bY^\CuP. (x'"J60׿Y:Oi;F{w佩b+\Yi`TDWa~|VH)8q/=9!g߆2Y)?ND)%?Ǐ`k/sn:;O299yB=a[Ng 3˲N}vLNy;*?x?~L&=xyӴ~}q{qE*IQ^^ͧvü{Huu=R|>JyUlZV, B~/YF!Y\u_ݼF{_C)LD]m {H 0ihhadd nUkf3oٺCvE\)QJi+֥@tDJkB$1!Đr0XQ|q?d2) Ӣ_}qv-< FŊ߫%roppVBwü~JidY4:}L6M7f٬F "?71<2#?Jyy4뷢<_a7_=Q E=S1И/9{+93֮E{ǂw{))?maÆm(uLE#lïZ  ~d];+]h j?!|$F}*"4(v'8s<ŏUkm7^7no1w2ؗ}TrͿEk>p'8OB7d7R(A 9.*Mi^ͳ; eeUwS+C)uO@ =Sy]` }l8^ZzRXj[^iUɺ$tj))<sbDJfg=Pk_{xaKo1:-uyG0M ԃ\0Lvuy'ȱc2Ji AdyVgVh!{]/&}}ċJ#%d !+87<;qN޼Nفl|1N:8ya  8}k¾+-$4FiZYÔXk*I&'@iI99)HSh4+2G:tGhS^繿 Kتm0 вDk}֚+QT4;sC}rՅE,8CX-e~>G&'9xpW,%Fh,Ry56Y–hW-(v_,? ; qrBk4-V7HQ;ˇ^Gv1JVV%,ik;D_W!))+BoS4QsTM;gt+ndS-~:11Sgv!0qRVh!"Ȋ(̦Yl.]PQWgٳE'`%W1{ndΗBk|Ž7ʒR~,lnoa&:ü$ 3<a[CBݮwt"o\ePJ=Hz"_c^Z.#ˆ*x z̝grY]tdkP*:97YľXyBkD4N.C_[;F9`8& !AMO c `@BA& Ost\-\NX+Xp < !bj3C&QL+*&kAQ=04}cC!9~820G'PC9xa!w&bo_1 Sw"ܱ V )Yl3+ס2KoXOx]"`^WOy :3GO0g;%Yv㐫(R/r (s } u B &FeYZh0y> =2<Ϟc/ -u= c&׭,.0"g"7 6T!vl#sc>{u/Oh Bᾈ)۴74]x7 gMӒ"d]U)}" v4co[ ɡs 5Gg=XR14?5A}D "b{0$L .\4y{_fe:kVS\\O]c^W52LSBDM! C3Dhr̦RtArx4&agaN3Cf<Ԉp4~ B'"1@.b_/xQ} _߃҉/gٓ2Qkqp0շpZ2fԫYz< 4L.Cyυι1t@鎫Fe sYfsF}^ V}N<_`p)alٶ "(XEAVZ<)2},:Ir*#m_YӼ R%a||EƼIJ,,+f"96r/}0jE/)s)cjW#w'Sʯ5<66lj$a~3Kʛy 2:cZ:Yh))+a߭K::N,Q F'qB]={.]h85C9cr=}*rk?vwV렵ٸW Rs%}rNAkDv|uFLBkWY YkX מ|)1!$#3%y?pF<@<Rr0}: }\J [5FRxY<9"SQdE(Q*Qʻ)q1E0B_O24[U'],lOb ]~WjHޏTQ5Syu wq)xnw8~)c 쫬gٲߠ H% k5dƝk> kEj,0% b"vi2Wس_CuK)K{n|>t{P1򨾜j>'kEkƗBg*H%'_aY6Bn!TL&ɌOb{c`'d^{t\i^[uɐ[}q0lM˕G:‚4kb祔c^:?bpg… +37stH:0}en6x˟%/<]BL&* 5&fK9Mq)/iyqtA%kUe[ڛKN]Ě^,"`/ s[EQQm?|XJ߅92m]G.E΃ח U*Cn.j_)Tѧj̿30ڇ!A0=͜ar I3$C^-9#|pk!)?7.x9 @OO;WƝZBFU keZ75F6Tc6"ZȚs2y/1 ʵ:u4xa`C>6Rb/Yм)^=+~uRd`/|_8xbB0?Ft||Z\##|K 0>>zxv8۴吅q 8ĥ)"6>~\8:qM}#͚'ĉ#p\׶ l#bA?)|g g9|8jP(cr,BwV (WliVxxᡁ@0Okn;ɥh$_ckCgriv}>=wGzβ KkBɛ[˪ !J)h&k2%07δt}!d<9;I&0wV/ v 0<H}L&8ob%Hi|޶o&h1L|u֦y~󛱢8fٲUsւ)0oiFx2}X[zVYr_;N(w]_4B@OanC?gĦx>мgx>ΛToZoOMp>40>V Oy V9iq!4 LN,ˢu{jsz]|"R޻&'ƚ{53ўFu(<٪9:΋]B;)B>1::8;~)Yt|0(pw2N%&X,URBK)3\zz&}ax4;ǟ(tLNg{N|Ǽ\G#C9g$^\}p?556]/RP.90 k,U8/u776s ʪ_01چ|\N 0VV*3H鴃J7iI!wG_^ypl}r*jɤSR 5QN@ iZ#1ٰy;_\3\BQQ x:WJv츟ٯ$"@6 S#qe딇(/P( Dy~TOϻ<4:-+F`0||;Xl-"uw$Цi󼕝mKʩorz"mϺ$F:~E'ҐvD\y?Rr8_He@ e~O,T.(ފR*cY^m|cVR[8 JҡSm!ΆԨb)RHG{?MpqrmN>߶Y)\p,d#xۆWY*,l6]v0h15M˙MS8+EdI='LBJIH7_9{Caз*Lq,dt >+~ّeʏ?xԕ4bBAŚjﵫ!'\Ը$WNvKO}ӽmSşذqsOy?\[,d@'73'j%kOe`1.g2"e =YIzS2|zŐƄa\U,dP;jhhhaxǶ?КZ՚.q SE+XrbOu%\GتX(H,N^~]JyEZQKceTQ]VGYqnah;y$cQahT&QPZ*iZ8UQQM.qo/T\7X"u?Mttl2Xq(IoW{R^ ux*SYJ! 4S.Jy~ BROS[V|žKNɛP(L6V^|cR7i7nZW1Fd@ Ara{詑|(T*dN]Ko?s=@ |_EvF]׍kR)eBJc" MUUbY6`~V޴dJKß&~'d3i WWWWWW
Current Directory: /usr/share/doc/python3-docs/html/_sources/library
Viewing File: /usr/share/doc/python3-docs/html/_sources/library/random.rst.txt
:mod:`random` --- Generate pseudo-random numbers ================================================ .. module:: random :synopsis: Generate pseudo-random numbers with various common distributions. **Source code:** :source:`Lib/random.py` -------------- This module implements pseudo-random number generators for various distributions. For integers, there is uniform selection from a range. For sequences, there is uniform selection of a random element, a function to generate a random permutation of a list in-place, and a function for random sampling without replacement. On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma, and beta distributions. For generating distributions of angles, the von Mises distribution is available. Almost all module functions depend on the basic function :func:`.random`, which generates a random float uniformly in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit precision floats and has a period of 2\*\*19937-1. The underlying implementation in C is both fast and threadsafe. The Mersenne Twister is one of the most extensively tested random number generators in existence. However, being completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes. The functions supplied by this module are actually bound methods of a hidden instance of the :class:`random.Random` class. You can instantiate your own instances of :class:`Random` to get generators that don't share state. Class :class:`Random` can also be subclassed if you want to use a different basic generator of your own devising: in that case, override the :meth:`~Random.random`, :meth:`~Random.seed`, :meth:`~Random.getstate`, and :meth:`~Random.setstate` methods. Optionally, a new generator can supply a :meth:`~Random.getrandbits` method --- this allows :meth:`randrange` to produce selections over an arbitrarily large range. The :mod:`random` module also provides the :class:`SystemRandom` class which uses the system function :func:`os.urandom` to generate random numbers from sources provided by the operating system. .. warning:: The pseudo-random generators of this module should not be used for security purposes. For security or cryptographic uses, see the :mod:`secrets` module. .. seealso:: M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator", ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3--30 1998. `Complementary-Multiply-with-Carry recipe <https://code.activestate.com/recipes/576707/>`_ for a compatible alternative random number generator with a long period and comparatively simple update operations. Bookkeeping functions --------------------- .. function:: seed(a=None, version=2) Initialize the random number generator. If *a* is omitted or ``None``, the current system time is used. If randomness sources are provided by the operating system, they are used instead of the system time (see the :func:`os.urandom` function for details on availability). If *a* is an int, it is used directly. With version 2 (the default), a :class:`str`, :class:`bytes`, or :class:`bytearray` object gets converted to an :class:`int` and all of its bits are used. With version 1 (provided for reproducing random sequences from older versions of Python), the algorithm for :class:`str` and :class:`bytes` generates a narrower range of seeds. .. versionchanged:: 3.2 Moved to the version 2 scheme which uses all of the bits in a string seed. .. function:: getstate() Return an object capturing the current internal state of the generator. This object can be passed to :func:`setstate` to restore the state. .. function:: setstate(state) *state* should have been obtained from a previous call to :func:`getstate`, and :func:`setstate` restores the internal state of the generator to what it was at the time :func:`getstate` was called. .. function:: getrandbits(k) Returns a Python integer with *k* random bits. This method is supplied with the MersenneTwister generator and some other generators may also provide it as an optional part of the API. When available, :meth:`getrandbits` enables :meth:`randrange` to handle arbitrarily large ranges. Functions for integers ---------------------- .. function:: randrange(stop) randrange(start, stop[, step]) Return a randomly selected element from ``range(start, stop, step)``. This is equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a range object. The positional argument pattern matches that of :func:`range`. Keyword arguments should not be used because the function may use them in unexpected ways. .. versionchanged:: 3.2 :meth:`randrange` is more sophisticated about producing equally distributed values. Formerly it used a style like ``int(random()*n)`` which could produce slightly uneven distributions. .. function:: randint(a, b) Return a random integer *N* such that ``a <= N <= b``. Alias for ``randrange(a, b+1)``. Functions for sequences ----------------------- .. function:: choice(seq) Return a random element from the non-empty sequence *seq*. If *seq* is empty, raises :exc:`IndexError`. .. function:: choices(population, weights=None, *, cum_weights=None, k=1) Return a *k* sized list of elements chosen from the *population* with replacement. If the *population* is empty, raises :exc:`IndexError`. If a *weights* sequence is specified, selections are made according to the relative weights. Alternatively, if a *cum_weights* sequence is given, the selections are made according to the cumulative weights (perhaps computed using :func:`itertools.accumulate`). For example, the relative weights ``[10, 5, 30, 5]`` are equivalent to the cumulative weights ``[10, 15, 45, 50]``. Internally, the relative weights are converted to cumulative weights before making selections, so supplying the cumulative weights saves work. If neither *weights* nor *cum_weights* are specified, selections are made with equal probability. If a weights sequence is supplied, it must be the same length as the *population* sequence. It is a :exc:`TypeError` to specify both *weights* and *cum_weights*. The *weights* or *cum_weights* can use any numeric type that interoperates with the :class:`float` values returned by :func:`random` (that includes integers, floats, and fractions but excludes decimals). .. versionadded:: 3.6 .. function:: shuffle(x[, random]) Shuffle the sequence *x* in place. The optional argument *random* is a 0-argument function returning a random float in [0.0, 1.0); by default, this is the function :func:`.random`. To shuffle an immutable sequence and return a new shuffled list, use ``sample(x, k=len(x))`` instead. Note that even for small ``len(x)``, the total number of permutations of *x* can quickly grow larger than the period of most random number generators. This implies that most permutations of a long sequence can never be generated. For example, a sequence of length 2080 is the largest that can fit within the period of the Mersenne Twister random number generator. .. function:: sample(population, k) Return a *k* length list of unique elements chosen from the population sequence or set. Used for random sampling without replacement. Returns a new list containing elements from the population while leaving the original population unchanged. The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices). Members of the population need not be :term:`hashable` or unique. If the population contains repeats, then each occurrence is a possible selection in the sample. To choose a sample from a range of integers, use a :func:`range` object as an argument. This is especially fast and space efficient for sampling from a large population: ``sample(range(10000000), k=60)``. If the sample size is larger than the population size, a :exc:`ValueError` is raised. Real-valued distributions ------------------------- The following functions generate specific real-valued distributions. Function parameters are named after the corresponding variables in the distribution's equation, as used in common mathematical practice; most of these equations can be found in any statistics text. .. function:: random() Return the next random floating point number in the range [0.0, 1.0). .. function:: uniform(a, b) Return a random floating point number *N* such that ``a <= N <= b`` for ``a <= b`` and ``b <= N <= a`` for ``b < a``. The end-point value ``b`` may or may not be included in the range depending on floating-point rounding in the equation ``a + (b-a) * random()``. .. function:: triangular(low, high, mode) Return a random floating point number *N* such that ``low <= N <= high`` and with the specified *mode* between those bounds. The *low* and *high* bounds default to zero and one. The *mode* argument defaults to the midpoint between the bounds, giving a symmetric distribution. .. function:: betavariate(alpha, beta) Beta distribution. Conditions on the parameters are ``alpha > 0`` and ``beta > 0``. Returned values range between 0 and 1. .. function:: expovariate(lambd) Exponential distribution. *lambd* is 1.0 divided by the desired mean. It should be nonzero. (The parameter would be called "lambda", but that is a reserved word in Python.) Returned values range from 0 to positive infinity if *lambd* is positive, and from negative infinity to 0 if *lambd* is negative. .. function:: gammavariate(alpha, beta) Gamma distribution. (*Not* the gamma function!) Conditions on the parameters are ``alpha > 0`` and ``beta > 0``. The probability distribution function is:: x ** (alpha - 1) * math.exp(-x / beta) pdf(x) = -------------------------------------- math.gamma(alpha) * beta ** alpha .. function:: gauss(mu, sigma) Gaussian distribution. *mu* is the mean, and *sigma* is the standard deviation. This is slightly faster than the :func:`normalvariate` function defined below. .. function:: lognormvariate(mu, sigma) Log normal distribution. If you take the natural logarithm of this distribution, you'll get a normal distribution with mean *mu* and standard deviation *sigma*. *mu* can have any value, and *sigma* must be greater than zero. .. function:: normalvariate(mu, sigma) Normal distribution. *mu* is the mean, and *sigma* is the standard deviation. .. function:: vonmisesvariate(mu, kappa) *mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa* is the concentration parameter, which must be greater than or equal to zero. If *kappa* is equal to zero, this distribution reduces to a uniform random angle over the range 0 to 2\*\ *pi*. .. function:: paretovariate(alpha) Pareto distribution. *alpha* is the shape parameter. .. function:: weibullvariate(alpha, beta) Weibull distribution. *alpha* is the scale parameter and *beta* is the shape parameter. Alternative Generator --------------------- .. class:: SystemRandom([seed]) Class that uses the :func:`os.urandom` function for generating random numbers from sources provided by the operating system. Not available on all systems. Does not rely on software state, and sequences are not reproducible. Accordingly, the :meth:`seed` method has no effect and is ignored. The :meth:`getstate` and :meth:`setstate` methods raise :exc:`NotImplementedError` if called. Notes on Reproducibility ------------------------ Sometimes it is useful to be able to reproduce the sequences given by a pseudo random number generator. By re-using a seed value, the same sequence should be reproducible from run to run as long as multiple threads are not running. Most of the random module's algorithms and seeding functions are subject to change across Python versions, but two aspects are guaranteed not to change: * If a new seeding method is added, then a backward compatible seeder will be offered. * The generator's :meth:`~Random.random` method will continue to produce the same sequence when the compatible seeder is given the same seed. .. _random-examples: Examples and Recipes -------------------- Basic examples:: >>> random() # Random float: 0.0 <= x < 1.0 0.37444887175646646 >>> uniform(2.5, 10.0) # Random float: 2.5 <= x < 10.0 3.1800146073117523 >>> expovariate(1 / 5) # Interval between arrivals averaging 5 seconds 5.148957571865031 >>> randrange(10) # Integer from 0 to 9 inclusive 7 >>> randrange(0, 101, 2) # Even integer from 0 to 100 inclusive 26 >>> choice(['win', 'lose', 'draw']) # Single random element from a sequence 'draw' >>> deck = 'ace two three four'.split() >>> shuffle(deck) # Shuffle a list >>> deck ['four', 'two', 'ace', 'three'] >>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement [40, 10, 50, 30] Simulations:: >>> # Six roulette wheel spins (weighted sampling with replacement) >>> choices(['red', 'black', 'green'], [18, 18, 2], k=6) ['red', 'green', 'black', 'black', 'red', 'black'] >>> # Deal 20 cards without replacement from a deck of 52 playing cards >>> # and determine the proportion of cards with a ten-value >>> # (a ten, jack, queen, or king). >>> deck = collections.Counter(tens=16, low_cards=36) >>> seen = sample(list(deck.elements()), k=20) >>> seen.count('tens') / 20 0.15 >>> # Estimate the probability of getting 5 or more heads from 7 spins >>> # of a biased coin that settles on heads 60% of the time. >>> trial = lambda: choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5 >>> sum(trial() for i in range(10000)) / 10000 0.4169 >>> # Probability of the median of 5 samples being in middle two quartiles >>> trial = lambda : 2500 <= sorted(choices(range(10000), k=5))[2] < 7500 >>> sum(trial() for i in range(10000)) / 10000 0.7958 Example of `statistical bootstrapping <https://en.wikipedia.org/wiki/Bootstrapping_(statistics)>`_ using resampling with replacement to estimate a confidence interval for the mean of a sample of size five:: # http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm from statistics import mean from random import choices data = 1, 2, 4, 4, 10 means = sorted(mean(choices(data, k=5)) for i in range(20)) print(f'The sample mean of {mean(data):.1f} has a 90% confidence ' f'interval from {means[1]:.1f} to {means[-2]:.1f}') Example of a `resampling permutation test <https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests>`_ to determine the statistical significance or `p-value <https://en.wikipedia.org/wiki/P-value>`_ of an observed difference between the effects of a drug versus a placebo:: # Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson from statistics import mean from random import shuffle drug = [54, 73, 53, 70, 73, 68, 52, 65, 65] placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46] observed_diff = mean(drug) - mean(placebo) n = 10000 count = 0 combined = drug + placebo for i in range(n): shuffle(combined) new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):]) count += (new_diff >= observed_diff) print(f'{n} label reshufflings produced only {count} instances with a difference') print(f'at least as extreme as the observed difference of {observed_diff:.1f}.') print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null') print(f'hypothesis that there is no difference between the drug and the placebo.') Simulation of arrival times and service deliveries in a single server queue:: from random import expovariate, gauss from statistics import mean, median, stdev average_arrival_interval = 5.6 average_service_time = 5.0 stdev_service_time = 0.5 num_waiting = 0 arrivals = [] starts = [] arrival = service_end = 0.0 for i in range(20000): if arrival <= service_end: num_waiting += 1 arrival += expovariate(1.0 / average_arrival_interval) arrivals.append(arrival) else: num_waiting -= 1 service_start = service_end if num_waiting else arrival service_time = gauss(average_service_time, stdev_service_time) service_end = service_start + service_time starts.append(service_start) waits = [start - arrival for arrival, start in zip(arrivals, starts)] print(f'Mean wait: {mean(waits):.1f}. Stdev wait: {stdev(waits):.1f}.') print(f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.') .. seealso:: `Statistics for Hackers <https://www.youtube.com/watch?v=Iq9DzN6mvYA>`_ a video tutorial by `Jake Vanderplas <https://us.pycon.org/2016/speaker/profile/295/>`_ on statistical analysis using just a few fundamental concepts including simulation, sampling, shuffling, and cross-validation. `Economics Simulation <http://nbviewer.jupyter.org/url/norvig.com/ipython/Economics.ipynb>`_ a simulation of a marketplace by `Peter Norvig <http://norvig.com/bio.html>`_ that shows effective use of many of the tools and distributions provided by this module (gauss, uniform, sample, betavariate, choice, triangular, and randrange). `A Concrete Introduction to Probability (using Python) <http://nbviewer.jupyter.org/url/norvig.com/ipython/Probability.ipynb>`_ a tutorial by `Peter Norvig <http://norvig.com/bio.html>`_ covering the basics of probability theory, how to write simulations, and how to perform data analysis using Python.