PNG  IHDRX cHRMz&u0`:pQ<bKGD pHYsodtIME MeqIDATxw]Wug^Qd˶ 6`!N:!@xI~)%7%@Bh&`lnjVF29gΨ4E$|>cɚ{gk= %,a KX%,a KX%,a KX%,a KX%,a KX%,a KX%, b` ǟzeאfp]<!SJmɤY޲ڿ,%c ~ع9VH.!Ͳz&QynֺTkRR.BLHi٪:l;@(!MԴ=žI,:o&N'Kù\vRmJ雵֫AWic H@" !: Cé||]k-Ha oݜ:y F())u]aG7*JV@J415p=sZH!=!DRʯvɱh~V\}v/GKY$n]"X"}t@ xS76^[bw4dsce)2dU0 CkMa-U5tvLƀ~mlMwfGE/-]7XAƟ`׮g ewxwC4\[~7@O-Q( a*XGƒ{ ՟}$_y3tĐƤatgvێi|K=uVyrŲlLӪuܿzwk$m87k( `múcE)"@rK( z4$D; 2kW=Xb$V[Ru819קR~qloѱDyįݎ*mxw]y5e4K@ЃI0A D@"BDk_)N\8͜9dz"fK0zɿvM /.:2O{ Nb=M=7>??Zuo32 DLD@D| &+֎C #B8ַ`bOb $D#ͮҪtx]%`ES`Ru[=¾!@Od37LJ0!OIR4m]GZRJu$‡c=%~s@6SKy?CeIh:[vR@Lh | (BhAMy=݃  G"'wzn޺~8ԽSh ~T*A:xR[ܹ?X[uKL_=fDȊ؂p0}7=D$Ekq!/t.*2ʼnDbŞ}DijYaȲ(""6HA;:LzxQ‘(SQQ}*PL*fc\s `/d'QXW, e`#kPGZuŞuO{{wm[&NBTiiI0bukcA9<4@SӊH*؎4U/'2U5.(9JuDfrޱtycU%j(:RUbArLֺN)udA':uGQN"-"Is.*+k@ `Ojs@yU/ H:l;@yyTn}_yw!VkRJ4P)~y#)r,D =ě"Q]ci'%HI4ZL0"MJy 8A{ aN<8D"1#IJi >XjX֔#@>-{vN!8tRݻ^)N_╗FJEk]CT՟ YP:_|H1@ CBk]yKYp|og?*dGvzنzӴzjֺNkC~AbZƷ`.H)=!QͷVTT(| u78y֮}|[8-Vjp%2JPk[}ԉaH8Wpqhwr:vWª<}l77_~{s۴V+RCģ%WRZ\AqHifɤL36: #F:p]Bq/z{0CU6ݳEv_^k7'>sq*+kH%a`0ԣisqにtү04gVgW΂iJiS'3w.w}l6MC2uԯ|>JF5`fV5m`Y**Db1FKNttu]4ccsQNnex/87+}xaUW9y>ͯ骵G{䩓Գ3+vU}~jJ.NFRD7<aJDB1#ҳgSb,+CS?/ VG J?|?,2#M9}B)MiE+G`-wo߫V`fio(}S^4e~V4bHOYb"b#E)dda:'?}׮4繏`{7Z"uny-?ǹ;0MKx{:_pÚmFמ:F " .LFQLG)Q8qN q¯¯3wOvxDb\. BKD9_NN &L:4D{mm o^tֽ:q!ƥ}K+<"m78N< ywsard5+вz~mnG)=}lYݧNj'QJS{S :UYS-952?&O-:W}(!6Mk4+>A>j+i|<<|;ر^߉=HE|V#F)Emm#}/"y GII웻Jі94+v뾧xu~5C95~ūH>c@덉pʃ1/4-A2G%7>m;–Y,cyyaln" ?ƻ!ʪ<{~h~i y.zZB̃/,雋SiC/JFMmBH&&FAbϓO^tubbb_hZ{_QZ-sύodFgO(6]TJA˯#`۶ɟ( %$&+V'~hiYy>922 Wp74Zkq+Ovn錄c>8~GqܲcWꂎz@"1A.}T)uiW4="jJ2W7mU/N0gcqܗOO}?9/wìXžΏ0 >֩(V^Rh32!Hj5`;O28؇2#ݕf3 ?sJd8NJ@7O0 b־?lldщ̡&|9C.8RTWwxWy46ah嘦mh٤&l zCy!PY?: CJyв]dm4ǜҐR޻RլhX{FƯanшQI@x' ao(kUUuxW_Ñ줮[w8 FRJ(8˼)_mQ _!RJhm=!cVmm ?sFOnll6Qk}alY}; "baӌ~M0w,Ggw2W:G/k2%R,_=u`WU R.9T"v,<\Ik޽/2110Ӿxc0gyC&Ny޽JҢrV6N ``یeA16"J³+Rj*;BϜkZPJaÍ<Jyw:NP8/D$ 011z֊Ⱳ3ι֘k1V_"h!JPIΣ'ɜ* aEAd:ݺ>y<}Lp&PlRfTb1]o .2EW\ͮ]38؋rTJsǏP@芎sF\> P^+dYJLbJ C-xϐn> ι$nj,;Ǖa FU *择|h ~izť3ᤓ`K'-f tL7JK+vf2)V'-sFuB4i+m+@My=O҈0"|Yxoj,3]:cо3 $#uŘ%Y"y죯LebqtҢVzq¼X)~>4L׶m~[1_k?kxֺQ`\ |ٛY4Ѯr!)N9{56(iNq}O()Em]=F&u?$HypWUeB\k]JɩSع9 Zqg4ZĊo oMcjZBU]B\TUd34ݝ~:7ڶSUsB0Z3srx 7`:5xcx !qZA!;%͚7&P H<WL!džOb5kF)xor^aujƍ7 Ǡ8/p^(L>ὴ-B,{ۇWzֺ^k]3\EE@7>lYBȝR.oHnXO/}sB|.i@ɥDB4tcm,@ӣgdtJ!lH$_vN166L__'Z)y&kH;:,Y7=J 9cG) V\hjiE;gya~%ks_nC~Er er)muuMg2;֫R)Md) ,¶ 2-wr#F7<-BBn~_(o=KO㭇[Xv eN_SMgSҐ BS헃D%g_N:/pe -wkG*9yYSZS.9cREL !k}<4_Xs#FmҶ:7R$i,fi!~' # !6/S6y@kZkZcX)%5V4P]VGYq%H1!;e1MV<!ϐHO021Dp= HMs~~a)ަu7G^];git!Frl]H/L$=AeUvZE4P\.,xi {-~p?2b#amXAHq)MWǾI_r`S Hz&|{ +ʖ_= (YS(_g0a03M`I&'9vl?MM+m~}*xT۲(fY*V4x@29s{DaY"toGNTO+xCAO~4Ϳ;p`Ѫ:>Ҵ7K 3}+0 387x\)a"/E>qpWB=1 ¨"MP(\xp߫́A3+J] n[ʼnӼaTbZUWb={~2ooKױӰp(CS\S筐R*JغV&&"FA}J>G֐p1ٸbk7 ŘH$JoN <8s^yk_[;gy-;߉DV{c B yce% aJhDȶ 2IdйIB/^n0tNtџdcKj4϶v~- CBcgqx9= PJ) dMsjpYB] GD4RDWX +h{y`,3ꊕ$`zj*N^TP4L:Iz9~6s) Ga:?y*J~?OrMwP\](21sZUD ?ܟQ5Q%ggW6QdO+\@ ̪X'GxN @'4=ˋ+*VwN ne_|(/BDfj5(Dq<*tNt1х!MV.C0 32b#?n0pzj#!38}޴o1KovCJ`8ŗ_"]] rDUy޲@ Ȗ-;xџ'^Y`zEd?0„ DAL18IS]VGq\4o !swV7ˣι%4FѮ~}6)OgS[~Q vcYbL!wG3 7띸*E Pql8=jT\꘿I(z<[6OrR8ºC~ډ]=rNl[g|v TMTղb-o}OrP^Q]<98S¤!k)G(Vkwyqyr޽Nv`N/e p/~NAOk \I:G6]4+K;j$R:Mi #*[AȚT,ʰ,;N{HZTGMoּy) ]%dHء9Պ䠬|<45,\=[bƟ8QXeB3- &dҩ^{>/86bXmZ]]yޚN[(WAHL$YAgDKp=5GHjU&99v簪C0vygln*P)9^͞}lMuiH!̍#DoRBn9l@ xA/_v=ȺT{7Yt2N"4!YN`ae >Q<XMydEB`VU}u]嫇.%e^ánE87Mu\t`cP=AD/G)sI"@MP;)]%fH9'FNsj1pVhY&9=0pfuJ&gޤx+k:!r˭wkl03׼Ku C &ѓYt{.O.zҏ z}/tf_wEp2gvX)GN#I ݭ߽v/ .& и(ZF{e"=V!{zW`, ]+LGz"(UJp|j( #V4, 8B 0 9OkRrlɱl94)'VH9=9W|>PS['G(*I1==C<5"Pg+x'K5EMd؞Af8lG ?D FtoB[je?{k3zQ vZ;%Ɠ,]E>KZ+T/ EJxOZ1i #T<@ I}q9/t'zi(EMqw`mYkU6;[t4DPeckeM;H}_g pMww}k6#H㶏+b8雡Sxp)&C $@'b,fPߑt$RbJ'vznuS ~8='72_`{q纶|Q)Xk}cPz9p7O:'|G~8wx(a 0QCko|0ASD>Ip=4Q, d|F8RcU"/KM opKle M3#i0c%<7׿p&pZq[TR"BpqauIp$ 8~Ĩ!8Սx\ւdT>>Z40ks7 z2IQ}ItԀ<-%S⍤};zIb$I 5K}Q͙D8UguWE$Jh )cu4N tZl+[]M4k8֦Zeq֮M7uIqG 1==tLtR,ƜSrHYt&QP윯Lg' I,3@P'}'R˪e/%-Auv·ñ\> vDJzlӾNv5:|K/Jb6KI9)Zh*ZAi`?S {aiVDԲuy5W7pWeQJk֤#5&V<̺@/GH?^τZL|IJNvI:'P=Ϛt"¨=cud S Q.Ki0 !cJy;LJR;G{BJy޺[^8fK6)=yʊ+(k|&xQ2`L?Ȓ2@Mf 0C`6-%pKpm')c$׻K5[J*U[/#hH!6acB JA _|uMvDyk y)6OPYjœ50VT K}cǻP[ $:]4MEA.y)|B)cf-A?(e|lɉ#P9V)[9t.EiQPDѠ3ϴ;E:+Օ t ȥ~|_N2,ZJLt4! %ա]u {+=p.GhNcŞQI?Nd'yeh n7zi1DB)1S | S#ًZs2|Ɛy$F SxeX{7Vl.Src3E℃Q>b6G ўYCmtկ~=K0f(=LrAS GN'ɹ9<\!a`)֕y[uՍ[09` 9 +57ts6}b4{oqd+J5fa/,97J#6yν99mRWxJyѡyu_TJc`~W>l^q#Ts#2"nD1%fS)FU w{ܯ R{ ˎ󅃏џDsZSQS;LV;7 Od1&1n$ N /.q3~eNɪ]E#oM~}v֯FڦwyZ=<<>Xo稯lfMFV6p02|*=tV!c~]fa5Y^Q_WN|Vs 0ҘދU97OI'N2'8N֭fgg-}V%y]U4 峧p*91#9U kCac_AFңĪy뚇Y_AiuYyTTYЗ-(!JFLt›17uTozc. S;7A&&<ԋ5y;Ro+:' *eYJkWR[@F %SHWP 72k4 qLd'J "zB6{AC0ƁA6U.'F3:Ȅ(9ΜL;D]m8ڥ9}dU "v!;*13Rg^fJyShyy5auA?ɩGHRjo^]׽S)Fm\toy 4WQS@mE#%5ʈfFYDX ~D5Ϡ9tE9So_aU4?Ѽm%&c{n>.KW1Tlb}:j uGi(JgcYj0qn+>) %\!4{LaJso d||u//P_y7iRJ߬nHOy) l+@$($VFIQ9%EeKʈU. ia&FY̒mZ=)+qqoQn >L!qCiDB;Y<%} OgBxB!ØuG)WG9y(Ą{_yesuZmZZey'Wg#C~1Cev@0D $a@˲(.._GimA:uyw֬%;@!JkQVM_Ow:P.s\)ot- ˹"`B,e CRtaEUP<0'}r3[>?G8xU~Nqu;Wm8\RIkբ^5@k+5(By'L&'gBJ3ݶ!/㮻w҅ yqPWUg<e"Qy*167΃sJ\oz]T*UQ<\FԎ`HaNmڜ6DysCask8wP8y9``GJ9lF\G g's Nn͵MLN֪u$| /|7=]O)6s !ĴAKh]q_ap $HH'\1jB^s\|- W1:=6lJBqjY^LsPk""`]w)󭃈,(HC ?䔨Y$Sʣ{4Z+0NvQkhol6C.婧/u]FwiVjZka&%6\F*Ny#8O,22+|Db~d ~Çwc N:FuuCe&oZ(l;@ee-+Wn`44AMK➝2BRՈt7g*1gph9N) *"TF*R(#'88pm=}X]u[i7bEc|\~EMn}P瘊J)K.0i1M6=7'_\kaZ(Th{K*GJyytw"IO-PWJk)..axӝ47"89Cc7ĐBiZx 7m!fy|ϿF9CbȩV 9V-՛^pV̌ɄS#Bv4-@]Vxt-Z, &ֺ*diؠ2^VXbs֔Ìl.jQ]Y[47gj=幽ex)A0ip׳ W2[ᎇhuE^~q흙L} #-b۸oFJ_QP3r6jr+"nfzRJTUqoaۍ /$d8Mx'ݓ= OՃ| )$2mcM*cЙj}f };n YG w0Ia!1Q.oYfr]DyISaP}"dIӗթO67jqR ҊƐƈaɤGG|h;t]䗖oSv|iZqX)oalv;۩meEJ\!8=$4QU4Xo&VEĊ YS^E#d,yX_> ۘ-e\ "Wa6uLĜZi`aD9.% w~mB(02G[6y.773a7 /=o7D)$Z 66 $bY^\CuP. (x'"J60׿Y:Oi;F{w佩b+\Yi`TDWa~|VH)8q/=9!g߆2Y)?ND)%?Ǐ`k/sn:;O299yB=a[Ng 3˲N}vLNy;*?x?~L&=xyӴ~}q{qE*IQ^^ͧvü{Huu=R|>JyUlZV, B~/YF!Y\u_ݼF{_C)LD]m {H 0ihhadd nUkf3oٺCvE\)QJi+֥@tDJkB$1!Đr0XQ|q?d2) Ӣ_}qv-< FŊ߫%roppVBwü~JidY4:}L6M7f٬F "?71<2#?Jyy4뷢<_a7_=Q E=S1И/9{+93֮E{ǂw{))?maÆm(uLE#lïZ  ~d];+]h j?!|$F}*"4(v'8s<ŏUkm7^7no1w2ؗ}TrͿEk>p'8OB7d7R(A 9.*Mi^ͳ; eeUwS+C)uO@ =Sy]` }l8^ZzRXj[^iUɺ$tj))<sbDJfg=Pk_{xaKo1:-uyG0M ԃ\0Lvuy'ȱc2Ji AdyVgVh!{]/&}}ċJ#%d !+87<;qN޼Nفl|1N:8ya  8}k¾+-$4FiZYÔXk*I&'@iI99)HSh4+2G:tGhS^繿 Kتm0 вDk}֚+QT4;sC}rՅE,8CX-e~>G&'9xpW,%Fh,Ry56Y–hW-(v_,? ; qrBk4-V7HQ;ˇ^Gv1JVV%,ik;D_W!))+BoS4QsTM;gt+ndS-~:11Sgv!0qRVh!"Ȋ(̦Yl.]PQWgٳE'`%W1{ndΗBk|Ž7ʒR~,lnoa&:ü$ 3<a[CBݮwt"o\ePJ=Hz"_c^Z.#ˆ*x z̝grY]tdkP*:97YľXyBkD4N.C_[;F9`8& !AMO c `@BA& Ost\-\NX+Xp < !bj3C&QL+*&kAQ=04}cC!9~820G'PC9xa!w&bo_1 Sw"ܱ V )Yl3+ס2KoXOx]"`^WOy :3GO0g;%Yv㐫(R/r (s } u B &FeYZh0y> =2<Ϟc/ -u= c&׭,.0"g"7 6T!vl#sc>{u/Oh Bᾈ)۴74]x7 gMӒ"d]U)}" v4co[ ɡs 5Gg=XR14?5A}D "b{0$L .\4y{_fe:kVS\\O]c^W52LSBDM! C3Dhr̦RtArx4&agaN3Cf<Ԉp4~ B'"1@.b_/xQ} _߃҉/gٓ2Qkqp0շpZ2fԫYz< 4L.Cyυι1t@鎫Fe sYfsF}^ V}N<_`p)alٶ "(XEAVZ<)2},:Ir*#m_YӼ R%a||EƼIJ,,+f"96r/}0jE/)s)cjW#w'Sʯ5<66lj$a~3Kʛy 2:cZ:Yh))+a߭K::N,Q F'qB]={.]h85C9cr=}*rk?vwV렵ٸW Rs%}rNAkDv|uFLBkWY YkX מ|)1!$#3%y?pF<@<Rr0}: }\J [5FRxY<9"SQdE(Q*Qʻ)q1E0B_O24[U'],lOb ]~WjHޏTQ5Syu wq)xnw8~)c 쫬gٲߠ H% k5dƝk> kEj,0% b"vi2Wس_CuK)K{n|>t{P1򨾜j>'kEkƗBg*H%'_aY6Bn!TL&ɌOb{c`'d^{t\i^[uɐ[}q0lM˕G:‚4kb祔c^:?bpg… +37stH:0}en6x˟%/<]BL&* 5&fK9Mq)/iyqtA%kUe[ڛKN]Ě^,"`/ s[EQQm?|XJ߅92m]G.E΃ח U*Cn.j_)Tѧj̿30ڇ!A0=͜ar I3$C^-9#|pk!)?7.x9 @OO;WƝZBFU keZ75F6Tc6"ZȚs2y/1 ʵ:u4xa`C>6Rb/Yм)^=+~uRd`/|_8xbB0?Ft||Z\##|K 0>>zxv8۴吅q 8ĥ)"6>~\8:qM}#͚'ĉ#p\׶ l#bA?)|g g9|8jP(cr,BwV (WliVxxᡁ@0Okn;ɥh$_ckCgriv}>=wGzβ KkBɛ[˪ !J)h&k2%07δt}!d<9;I&0wV/ v 0<H}L&8ob%Hi|޶o&h1L|u֦y~󛱢8fٲUsւ)0oiFx2}X[zVYr_;N(w]_4B@OanC?gĦx>мgx>ΛToZoOMp>40>V Oy V9iq!4 LN,ˢu{jsz]|"R޻&'ƚ{53ўFu(<٪9:΋]B;)B>1::8;~)Yt|0(pw2N%&X,URBK)3\zz&}ax4;ǟ(tLNg{N|Ǽ\G#C9g$^\}p?556]/RP.90 k,U8/u776s ʪ_01چ|\N 0VV*3H鴃J7iI!wG_^ypl}r*jɤSR 5QN@ iZ#1ٰy;_\3\BQQ x:WJv츟ٯ$"@6 S#qe딇(/P( Dy~TOϻ<4:-+F`0||;Xl-"uw$Цi󼕝mKʩorz"mϺ$F:~E'ҐvD\y?Rr8_He@ e~O,T.(ފR*cY^m|cVR[8 JҡSm!ΆԨb)RHG{?MpqrmN>߶Y)\p,d#xۆWY*,l6]v0h15M˙MS8+EdI='LBJIH7_9{Caз*Lq,dt >+~ّeʏ?xԕ4bBAŚjﵫ!'\Ը$WNvKO}ӽmSşذqsOy?\[,d@'73'j%kOe`1.g2"e =YIzS2|zŐƄa\U,dP;jhhhaxǶ?КZ՚.q SE+XrbOu%\GتX(H,N^~]JyEZQKceTQ]VGYqnah;y$cQahT&QPZ*iZ8UQQM.qo/T\7X"u?Mttl2Xq(IoW{R^ ux*SYJ! 4S.Jy~ BROS[V|žKNɛP(L6V^|cR7i7nZW1Fd@ Ara{詑|(T*dN]Ko?s=@ |_EvF]׍kR)eBJc" MUUbY6`~V޴dJKß&~'d3i WWWWWW
Current Directory: /opt/imh-python/lib/python3.9/site-packages/numpy/doc
Viewing File: /opt/imh-python/lib/python3.9/site-packages/numpy/doc/ufuncs.py
""" =================== Universal Functions =================== Ufuncs are, generally speaking, mathematical functions or operations that are applied element-by-element to the contents of an array. That is, the result in each output array element only depends on the value in the corresponding input array (or arrays) and on no other array elements. NumPy comes with a large suite of ufuncs, and scipy extends that suite substantially. The simplest example is the addition operator: :: >>> np.array([0,2,3,4]) + np.array([1,1,-1,2]) array([1, 3, 2, 6]) The ufunc module lists all the available ufuncs in numpy. Documentation on the specific ufuncs may be found in those modules. This documentation is intended to address the more general aspects of ufuncs common to most of them. All of the ufuncs that make use of Python operators (e.g., +, -, etc.) have equivalent functions defined (e.g. add() for +) Type coercion ============= What happens when a binary operator (e.g., +,-,\\*,/, etc) deals with arrays of two different types? What is the type of the result? Typically, the result is the higher of the two types. For example: :: float32 + float64 -> float64 int8 + int32 -> int32 int16 + float32 -> float32 float32 + complex64 -> complex64 There are some less obvious cases generally involving mixes of types (e.g. uints, ints and floats) where equal bit sizes for each are not capable of saving all the information in a different type of equivalent bit size. Some examples are int32 vs float32 or uint32 vs int32. Generally, the result is the higher type of larger size than both (if available). So: :: int32 + float32 -> float64 uint32 + int32 -> int64 Finally, the type coercion behavior when expressions involve Python scalars is different than that seen for arrays. Since Python has a limited number of types, combining a Python int with a dtype=np.int8 array does not coerce to the higher type but instead, the type of the array prevails. So the rules for Python scalars combined with arrays is that the result will be that of the array equivalent the Python scalar if the Python scalar is of a higher 'kind' than the array (e.g., float vs. int), otherwise the resultant type will be that of the array. For example: :: Python int + int8 -> int8 Python float + int8 -> float64 ufunc methods ============= Binary ufuncs support 4 methods. **.reduce(arr)** applies the binary operator to elements of the array in sequence. For example: :: >>> np.add.reduce(np.arange(10)) # adds all elements of array 45 For multidimensional arrays, the first dimension is reduced by default: :: >>> np.add.reduce(np.arange(10).reshape(2,5)) array([ 5, 7, 9, 11, 13]) The axis keyword can be used to specify different axes to reduce: :: >>> np.add.reduce(np.arange(10).reshape(2,5),axis=1) array([10, 35]) **.accumulate(arr)** applies the binary operator and generates an equivalently shaped array that includes the accumulated amount for each element of the array. A couple examples: :: >>> np.add.accumulate(np.arange(10)) array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45]) >>> np.multiply.accumulate(np.arange(1,9)) array([ 1, 2, 6, 24, 120, 720, 5040, 40320]) The behavior for multidimensional arrays is the same as for .reduce(), as is the use of the axis keyword). **.reduceat(arr,indices)** allows one to apply reduce to selected parts of an array. It is a difficult method to understand. See the documentation at: **.outer(arr1,arr2)** generates an outer operation on the two arrays arr1 and arr2. It will work on multidimensional arrays (the shape of the result is the concatenation of the two input shapes.: :: >>> np.multiply.outer(np.arange(3),np.arange(4)) array([[0, 0, 0, 0], [0, 1, 2, 3], [0, 2, 4, 6]]) Output arguments ================ All ufuncs accept an optional output array. The array must be of the expected output shape. Beware that if the type of the output array is of a different (and lower) type than the output result, the results may be silently truncated or otherwise corrupted in the downcast to the lower type. This usage is useful when one wants to avoid creating large temporary arrays and instead allows one to reuse the same array memory repeatedly (at the expense of not being able to use more convenient operator notation in expressions). Note that when the output argument is used, the ufunc still returns a reference to the result. >>> x = np.arange(2) >>> np.add(np.arange(2),np.arange(2.),x) array([0, 2]) >>> x array([0, 2]) and & or as ufuncs ================== Invariably people try to use the python 'and' and 'or' as logical operators (and quite understandably). But these operators do not behave as normal operators since Python treats these quite differently. They cannot be overloaded with array equivalents. Thus using 'and' or 'or' with an array results in an error. There are two alternatives: 1) use the ufunc functions logical_and() and logical_or(). 2) use the bitwise operators & and \\|. The drawback of these is that if the arguments to these operators are not boolean arrays, the result is likely incorrect. On the other hand, most usages of logical_and and logical_or are with boolean arrays. As long as one is careful, this is a convenient way to apply these operators. """