PNG  IHDRX cHRMz&u0`:pQ<bKGD pHYsodtIME MeqIDATxw]Wug^Qd˶ 6`!N:!@xI~)%7%@Bh&`lnjVF29gΨ4E$|>cɚ{gk= %,a KX%,a KX%,a KX%,a KX%,a KX%,a KX%, b` ǟzeאfp]<!SJmɤY޲ڿ,%c ~ع9VH.!Ͳz&QynֺTkRR.BLHi٪:l;@(!MԴ=žI,:o&N'Kù\vRmJ雵֫AWic H@" !: Cé||]k-Ha oݜ:y F())u]aG7*JV@J415p=sZH!=!DRʯvɱh~V\}v/GKY$n]"X"}t@ xS76^[bw4dsce)2dU0 CkMa-U5tvLƀ~mlMwfGE/-]7XAƟ`׮g ewxwC4\[~7@O-Q( a*XGƒ{ ՟}$_y3tĐƤatgvێi|K=uVyrŲlLӪuܿzwk$m87k( `múcE)"@rK( z4$D; 2kW=Xb$V[Ru819קR~qloѱDyįݎ*mxw]y5e4K@ЃI0A D@"BDk_)N\8͜9dz"fK0zɿvM /.:2O{ Nb=M=7>??Zuo32 DLD@D| &+֎C #B8ַ`bOb $D#ͮҪtx]%`ES`Ru[=¾!@Od37LJ0!OIR4m]GZRJu$‡c=%~s@6SKy?CeIh:[vR@Lh | (BhAMy=݃  G"'wzn޺~8ԽSh ~T*A:xR[ܹ?X[uKL_=fDȊ؂p0}7=D$Ekq!/t.*2ʼnDbŞ}DijYaȲ(""6HA;:LzxQ‘(SQQ}*PL*fc\s `/d'QXW, e`#kPGZuŞuO{{wm[&NBTiiI0bukcA9<4@SӊH*؎4U/'2U5.(9JuDfrޱtycU%j(:RUbArLֺN)udA':uGQN"-"Is.*+k@ `Ojs@yU/ H:l;@yyTn}_yw!VkRJ4P)~y#)r,D =ě"Q]ci'%HI4ZL0"MJy 8A{ aN<8D"1#IJi >XjX֔#@>-{vN!8tRݻ^)N_╗FJEk]CT՟ YP:_|H1@ CBk]yKYp|og?*dGvzنzӴzjֺNkC~AbZƷ`.H)=!QͷVTT(| u78y֮}|[8-Vjp%2JPk[}ԉaH8Wpqhwr:vWª<}l77_~{s۴V+RCģ%WRZ\AqHifɤL36: #F:p]Bq/z{0CU6ݳEv_^k7'>sq*+kH%a`0ԣisqにtү04gVgW΂iJiS'3w.w}l6MC2uԯ|>JF5`fV5m`Y**Db1FKNttu]4ccsQNnex/87+}xaUW9y>ͯ骵G{䩓Գ3+vU}~jJ.NFRD7<aJDB1#ҳgSb,+CS?/ VG J?|?,2#M9}B)MiE+G`-wo߫V`fio(}S^4e~V4bHOYb"b#E)dda:'?}׮4繏`{7Z"uny-?ǹ;0MKx{:_pÚmFמ:F " .LFQLG)Q8qN q¯¯3wOvxDb\. BKD9_NN &L:4D{mm o^tֽ:q!ƥ}K+<"m78N< ywsard5+вz~mnG)=}lYݧNj'QJS{S :UYS-952?&O-:W}(!6Mk4+>A>j+i|<<|;ر^߉=HE|V#F)Emm#}/"y GII웻Jі94+v뾧xu~5C95~ūH>c@덉pʃ1/4-A2G%7>m;–Y,cyyaln" ?ƻ!ʪ<{~h~i y.zZB̃/,雋SiC/JFMmBH&&FAbϓO^tubbb_hZ{_QZ-sύodFgO(6]TJA˯#`۶ɟ( %$&+V'~hiYy>922 Wp74Zkq+Ovn錄c>8~GqܲcWꂎz@"1A.}T)uiW4="jJ2W7mU/N0gcqܗOO}?9/wìXžΏ0 >֩(V^Rh32!Hj5`;O28؇2#ݕf3 ?sJd8NJ@7O0 b־?lldщ̡&|9C.8RTWwxWy46ah嘦mh٤&l zCy!PY?: CJyв]dm4ǜҐR޻RլhX{FƯanшQI@x' ao(kUUuxW_Ñ줮[w8 FRJ(8˼)_mQ _!RJhm=!cVmm ?sFOnll6Qk}alY}; "baӌ~M0w,Ggw2W:G/k2%R,_=u`WU R.9T"v,<\Ik޽/2110Ӿxc0gyC&Ny޽JҢrV6N ``یeA16"J³+Rj*;BϜkZPJaÍ<Jyw:NP8/D$ 011z֊Ⱳ3ι֘k1V_"h!JPIΣ'ɜ* aEAd:ݺ>y<}Lp&PlRfTb1]o .2EW\ͮ]38؋rTJsǏP@芎sF\> P^+dYJLbJ C-xϐn> ι$nj,;Ǖa FU *择|h ~izť3ᤓ`K'-f tL7JK+vf2)V'-sFuB4i+m+@My=O҈0"|Yxoj,3]:cо3 $#uŘ%Y"y죯LebqtҢVzq¼X)~>4L׶m~[1_k?kxֺQ`\ |ٛY4Ѯr!)N9{56(iNq}O()Em]=F&u?$HypWUeB\k]JɩSع9 Zqg4ZĊo oMcjZBU]B\TUd34ݝ~:7ڶSUsB0Z3srx 7`:5xcx !qZA!;%͚7&P H<WL!džOb5kF)xor^aujƍ7 Ǡ8/p^(L>ὴ-B,{ۇWzֺ^k]3\EE@7>lYBȝR.oHnXO/}sB|.i@ɥDB4tcm,@ӣgdtJ!lH$_vN166L__'Z)y&kH;:,Y7=J 9cG) V\hjiE;gya~%ks_nC~Er er)muuMg2;֫R)Md) ,¶ 2-wr#F7<-BBn~_(o=KO㭇[Xv eN_SMgSҐ BS헃D%g_N:/pe -wkG*9yYSZS.9cREL !k}<4_Xs#FmҶ:7R$i,fi!~' # !6/S6y@kZkZcX)%5V4P]VGYq%H1!;e1MV<!ϐHO021Dp= HMs~~a)ަu7G^];git!Frl]H/L$=AeUvZE4P\.,xi {-~p?2b#amXAHq)MWǾI_r`S Hz&|{ +ʖ_= (YS(_g0a03M`I&'9vl?MM+m~}*xT۲(fY*V4x@29s{DaY"toGNTO+xCAO~4Ϳ;p`Ѫ:>Ҵ7K 3}+0 387x\)a"/E>qpWB=1 ¨"MP(\xp߫́A3+J] n[ʼnӼaTbZUWb={~2ooKױӰp(CS\S筐R*JغV&&"FA}J>G֐p1ٸbk7 ŘH$JoN <8s^yk_[;gy-;߉DV{c B yce% aJhDȶ 2IdйIB/^n0tNtџdcKj4϶v~- CBcgqx9= PJ) dMsjpYB] GD4RDWX +h{y`,3ꊕ$`zj*N^TP4L:Iz9~6s) Ga:?y*J~?OrMwP\](21sZUD ?ܟQ5Q%ggW6QdO+\@ ̪X'GxN @'4=ˋ+*VwN ne_|(/BDfj5(Dq<*tNt1х!MV.C0 32b#?n0pzj#!38}޴o1KovCJ`8ŗ_"]] rDUy޲@ Ȗ-;xџ'^Y`zEd?0„ DAL18IS]VGq\4o !swV7ˣι%4FѮ~}6)OgS[~Q vcYbL!wG3 7띸*E Pql8=jT\꘿I(z<[6OrR8ºC~ډ]=rNl[g|v TMTղb-o}OrP^Q]<98S¤!k)G(Vkwyqyr޽Nv`N/e p/~NAOk \I:G6]4+K;j$R:Mi #*[AȚT,ʰ,;N{HZTGMoּy) ]%dHء9Պ䠬|<45,\=[bƟ8QXeB3- &dҩ^{>/86bXmZ]]yޚN[(WAHL$YAgDKp=5GHjU&99v簪C0vygln*P)9^͞}lMuiH!̍#DoRBn9l@ xA/_v=ȺT{7Yt2N"4!YN`ae >Q<XMydEB`VU}u]嫇.%e^ánE87Mu\t`cP=AD/G)sI"@MP;)]%fH9'FNsj1pVhY&9=0pfuJ&gޤx+k:!r˭wkl03׼Ku C &ѓYt{.O.zҏ z}/tf_wEp2gvX)GN#I ݭ߽v/ .& и(ZF{e"=V!{zW`, ]+LGz"(UJp|j( #V4, 8B 0 9OkRrlɱl94)'VH9=9W|>PS['G(*I1==C<5"Pg+x'K5EMd؞Af8lG ?D FtoB[je?{k3zQ vZ;%Ɠ,]E>KZ+T/ EJxOZ1i #T<@ I}q9/t'zi(EMqw`mYkU6;[t4DPeckeM;H}_g pMww}k6#H㶏+b8雡Sxp)&C $@'b,fPߑt$RbJ'vznuS ~8='72_`{q纶|Q)Xk}cPz9p7O:'|G~8wx(a 0QCko|0ASD>Ip=4Q, d|F8RcU"/KM opKle M3#i0c%<7׿p&pZq[TR"BpqauIp$ 8~Ĩ!8Սx\ւdT>>Z40ks7 z2IQ}ItԀ<-%S⍤};zIb$I 5K}Q͙D8UguWE$Jh )cu4N tZl+[]M4k8֦Zeq֮M7uIqG 1==tLtR,ƜSrHYt&QP윯Lg' I,3@P'}'R˪e/%-Auv·ñ\> vDJzlӾNv5:|K/Jb6KI9)Zh*ZAi`?S {aiVDԲuy5W7pWeQJk֤#5&V<̺@/GH?^τZL|IJNvI:'P=Ϛt"¨=cud S Q.Ki0 !cJy;LJR;G{BJy޺[^8fK6)=yʊ+(k|&xQ2`L?Ȓ2@Mf 0C`6-%pKpm')c$׻K5[J*U[/#hH!6acB JA _|uMvDyk y)6OPYjœ50VT K}cǻP[ $:]4MEA.y)|B)cf-A?(e|lɉ#P9V)[9t.EiQPDѠ3ϴ;E:+Օ t ȥ~|_N2,ZJLt4! %ա]u {+=p.GhNcŞQI?Nd'yeh n7zi1DB)1S | S#ًZs2|Ɛy$F SxeX{7Vl.Src3E℃Q>b6G ўYCmtկ~=K0f(=LrAS GN'ɹ9<\!a`)֕y[uՍ[09` 9 +57ts6}b4{oqd+J5fa/,97J#6yν99mRWxJyѡyu_TJc`~W>l^q#Ts#2"nD1%fS)FU w{ܯ R{ ˎ󅃏џDsZSQS;LV;7 Od1&1n$ N /.q3~eNɪ]E#oM~}v֯FڦwyZ=<<>Xo稯lfMFV6p02|*=tV!c~]fa5Y^Q_WN|Vs 0ҘދU97OI'N2'8N֭fgg-}V%y]U4 峧p*91#9U kCac_AFңĪy뚇Y_AiuYyTTYЗ-(!JFLt›17uTozc. S;7A&&<ԋ5y;Ro+:' *eYJkWR[@F %SHWP 72k4 qLd'J "zB6{AC0ƁA6U.'F3:Ȅ(9ΜL;D]m8ڥ9}dU "v!;*13Rg^fJyShyy5auA?ɩGHRjo^]׽S)Fm\toy 4WQS@mE#%5ʈfFYDX ~D5Ϡ9tE9So_aU4?Ѽm%&c{n>.KW1Tlb}:j uGi(JgcYj0qn+>) %\!4{LaJso d||u//P_y7iRJ߬nHOy) l+@$($VFIQ9%EeKʈU. ia&FY̒mZ=)+qqoQn >L!qCiDB;Y<%} OgBxB!ØuG)WG9y(Ą{_yesuZmZZey'Wg#C~1Cev@0D $a@˲(.._GimA:uyw֬%;@!JkQVM_Ow:P.s\)ot- ˹"`B,e CRtaEUP<0'}r3[>?G8xU~Nqu;Wm8\RIkբ^5@k+5(By'L&'gBJ3ݶ!/㮻w҅ yqPWUg<e"Qy*167΃sJ\oz]T*UQ<\FԎ`HaNmڜ6DysCask8wP8y9``GJ9lF\G g's Nn͵MLN֪u$| /|7=]O)6s !ĴAKh]q_ap $HH'\1jB^s\|- W1:=6lJBqjY^LsPk""`]w)󭃈,(HC ?䔨Y$Sʣ{4Z+0NvQkhol6C.婧/u]FwiVjZka&%6\F*Ny#8O,22+|Db~d ~Çwc N:FuuCe&oZ(l;@ee-+Wn`44AMK➝2BRՈt7g*1gph9N) *"TF*R(#'88pm=}X]u[i7bEc|\~EMn}P瘊J)K.0i1M6=7'_\kaZ(Th{K*GJyytw"IO-PWJk)..axӝ47"89Cc7ĐBiZx 7m!fy|ϿF9CbȩV 9V-՛^pV̌ɄS#Bv4-@]Vxt-Z, &ֺ*diؠ2^VXbs֔Ìl.jQ]Y[47gj=幽ex)A0ip׳ W2[ᎇhuE^~q흙L} #-b۸oFJ_QP3r6jr+"nfzRJTUqoaۍ /$d8Mx'ݓ= OՃ| )$2mcM*cЙj}f };n YG w0Ia!1Q.oYfr]DyISaP}"dIӗթO67jqR ҊƐƈaɤGG|h;t]䗖oSv|iZqX)oalv;۩meEJ\!8=$4QU4Xo&VEĊ YS^E#d,yX_> ۘ-e\ "Wa6uLĜZi`aD9.% w~mB(02G[6y.773a7 /=o7D)$Z 66 $bY^\CuP. (x'"J60׿Y:Oi;F{w佩b+\Yi`TDWa~|VH)8q/=9!g߆2Y)?ND)%?Ǐ`k/sn:;O299yB=a[Ng 3˲N}vLNy;*?x?~L&=xyӴ~}q{qE*IQ^^ͧvü{Huu=R|>JyUlZV, B~/YF!Y\u_ݼF{_C)LD]m {H 0ihhadd nUkf3oٺCvE\)QJi+֥@tDJkB$1!Đr0XQ|q?d2) Ӣ_}qv-< FŊ߫%roppVBwü~JidY4:}L6M7f٬F "?71<2#?Jyy4뷢<_a7_=Q E=S1И/9{+93֮E{ǂw{))?maÆm(uLE#lïZ  ~d];+]h j?!|$F}*"4(v'8s<ŏUkm7^7no1w2ؗ}TrͿEk>p'8OB7d7R(A 9.*Mi^ͳ; eeUwS+C)uO@ =Sy]` }l8^ZzRXj[^iUɺ$tj))<sbDJfg=Pk_{xaKo1:-uyG0M ԃ\0Lvuy'ȱc2Ji AdyVgVh!{]/&}}ċJ#%d !+87<;qN޼Nفl|1N:8ya  8}k¾+-$4FiZYÔXk*I&'@iI99)HSh4+2G:tGhS^繿 Kتm0 вDk}֚+QT4;sC}rՅE,8CX-e~>G&'9xpW,%Fh,Ry56Y–hW-(v_,? ; qrBk4-V7HQ;ˇ^Gv1JVV%,ik;D_W!))+BoS4QsTM;gt+ndS-~:11Sgv!0qRVh!"Ȋ(̦Yl.]PQWgٳE'`%W1{ndΗBk|Ž7ʒR~,lnoa&:ü$ 3<a[CBݮwt"o\ePJ=Hz"_c^Z.#ˆ*x z̝grY]tdkP*:97YľXyBkD4N.C_[;F9`8& !AMO c `@BA& Ost\-\NX+Xp < !bj3C&QL+*&kAQ=04}cC!9~820G'PC9xa!w&bo_1 Sw"ܱ V )Yl3+ס2KoXOx]"`^WOy :3GO0g;%Yv㐫(R/r (s } u B &FeYZh0y> =2<Ϟc/ -u= c&׭,.0"g"7 6T!vl#sc>{u/Oh Bᾈ)۴74]x7 gMӒ"d]U)}" v4co[ ɡs 5Gg=XR14?5A}D "b{0$L .\4y{_fe:kVS\\O]c^W52LSBDM! C3Dhr̦RtArx4&agaN3Cf<Ԉp4~ B'"1@.b_/xQ} _߃҉/gٓ2Qkqp0շpZ2fԫYz< 4L.Cyυι1t@鎫Fe sYfsF}^ V}N<_`p)alٶ "(XEAVZ<)2},:Ir*#m_YӼ R%a||EƼIJ,,+f"96r/}0jE/)s)cjW#w'Sʯ5<66lj$a~3Kʛy 2:cZ:Yh))+a߭K::N,Q F'qB]={.]h85C9cr=}*rk?vwV렵ٸW Rs%}rNAkDv|uFLBkWY YkX מ|)1!$#3%y?pF<@<Rr0}: }\J [5FRxY<9"SQdE(Q*Qʻ)q1E0B_O24[U'],lOb ]~WjHޏTQ5Syu wq)xnw8~)c 쫬gٲߠ H% k5dƝk> kEj,0% b"vi2Wس_CuK)K{n|>t{P1򨾜j>'kEkƗBg*H%'_aY6Bn!TL&ɌOb{c`'d^{t\i^[uɐ[}q0lM˕G:‚4kb祔c^:?bpg… +37stH:0}en6x˟%/<]BL&* 5&fK9Mq)/iyqtA%kUe[ڛKN]Ě^,"`/ s[EQQm?|XJ߅92m]G.E΃ח U*Cn.j_)Tѧj̿30ڇ!A0=͜ar I3$C^-9#|pk!)?7.x9 @OO;WƝZBFU keZ75F6Tc6"ZȚs2y/1 ʵ:u4xa`C>6Rb/Yм)^=+~uRd`/|_8xbB0?Ft||Z\##|K 0>>zxv8۴吅q 8ĥ)"6>~\8:qM}#͚'ĉ#p\׶ l#bA?)|g g9|8jP(cr,BwV (WliVxxᡁ@0Okn;ɥh$_ckCgriv}>=wGzβ KkBɛ[˪ !J)h&k2%07δt}!d<9;I&0wV/ v 0<H}L&8ob%Hi|޶o&h1L|u֦y~󛱢8fٲUsւ)0oiFx2}X[zVYr_;N(w]_4B@OanC?gĦx>мgx>ΛToZoOMp>40>V Oy V9iq!4 LN,ˢu{jsz]|"R޻&'ƚ{53ўFu(<٪9:΋]B;)B>1::8;~)Yt|0(pw2N%&X,URBK)3\zz&}ax4;ǟ(tLNg{N|Ǽ\G#C9g$^\}p?556]/RP.90 k,U8/u776s ʪ_01چ|\N 0VV*3H鴃J7iI!wG_^ypl}r*jɤSR 5QN@ iZ#1ٰy;_\3\BQQ x:WJv츟ٯ$"@6 S#qe딇(/P( Dy~TOϻ<4:-+F`0||;Xl-"uw$Цi󼕝mKʩorz"mϺ$F:~E'ҐvD\y?Rr8_He@ e~O,T.(ފR*cY^m|cVR[8 JҡSm!ΆԨb)RHG{?MpqrmN>߶Y)\p,d#xۆWY*,l6]v0h15M˙MS8+EdI='LBJIH7_9{Caз*Lq,dt >+~ّeʏ?xԕ4bBAŚjﵫ!'\Ը$WNvKO}ӽmSşذqsOy?\[,d@'73'j%kOe`1.g2"e =YIzS2|zŐƄa\U,dP;jhhhaxǶ?КZ՚.q SE+XrbOu%\GتX(H,N^~]JyEZQKceTQ]VGYqnah;y$cQahT&QPZ*iZ8UQQM.qo/T\7X"u?Mttl2Xq(IoW{R^ ux*SYJ! 4S.Jy~ BROS[V|žKNɛP(L6V^|cR7i7nZW1Fd@ Ara{詑|(T*dN]Ko?s=@ |_EvF]׍kR)eBJc" MUUbY6`~V޴dJKß&~'d3i WWWWWW
Current Directory: /opt/imh-python/lib/python3.9/site-packages/jedi/inference/value
Viewing File: /opt/imh-python/lib/python3.9/site-packages/jedi/inference/value/iterable.py
""" Contains all classes and functions to deal with lists, dicts, generators and iterators in general. """ from jedi.inference import compiled from jedi.inference import analysis from jedi.inference.lazy_value import LazyKnownValue, LazyKnownValues, \ LazyTreeValue from jedi.inference.helpers import get_int_or_none, is_string, \ reraise_getitem_errors, SimpleGetItemNotFound from jedi.inference.utils import safe_property, to_list from jedi.inference.cache import inference_state_method_cache from jedi.inference.filters import LazyAttributeOverwrite, publish_method from jedi.inference.base_value import ValueSet, Value, NO_VALUES, \ ContextualizedNode, iterate_values, sentinel, \ LazyValueWrapper from jedi.parser_utils import get_sync_comp_fors from jedi.inference.context import CompForContext from jedi.inference.value.dynamic_arrays import check_array_additions class IterableMixin: def py__next__(self, contextualized_node=None): return self.py__iter__(contextualized_node) def py__stop_iteration_returns(self): return ValueSet([compiled.builtin_from_name(self.inference_state, 'None')]) # At the moment, safe values are simple values like "foo", 1 and not # lists/dicts. Therefore as a small speed optimization we can just do the # default instead of resolving the lazy wrapped values, that are just # doing this in the end as well. # This mostly speeds up patterns like `sys.version_info >= (3, 0)` in # typeshed. get_safe_value = Value.get_safe_value class GeneratorBase(LazyAttributeOverwrite, IterableMixin): array_type = None def _get_wrapped_value(self): instance, = self._get_cls().execute_annotation() return instance def _get_cls(self): generator, = self.inference_state.typing_module.py__getattribute__('Generator') return generator def py__bool__(self): return True @publish_method('__iter__') def _iter(self, arguments): return ValueSet([self]) @publish_method('send') @publish_method('__next__') def _next(self, arguments): return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__()) def py__stop_iteration_returns(self): return ValueSet([compiled.builtin_from_name(self.inference_state, 'None')]) @property def name(self): return compiled.CompiledValueName(self, 'Generator') def get_annotated_class_object(self): from jedi.inference.gradual.generics import TupleGenericManager gen_values = self.merge_types_of_iterate().py__class__() gm = TupleGenericManager((gen_values, NO_VALUES, NO_VALUES)) return self._get_cls().with_generics(gm) class Generator(GeneratorBase): """Handling of `yield` functions.""" def __init__(self, inference_state, func_execution_context): super().__init__(inference_state) self._func_execution_context = func_execution_context def py__iter__(self, contextualized_node=None): iterators = self._func_execution_context.infer_annotations() if iterators: return iterators.iterate(contextualized_node) return self._func_execution_context.get_yield_lazy_values() def py__stop_iteration_returns(self): return self._func_execution_context.get_return_values() def __repr__(self): return "<%s of %s>" % (type(self).__name__, self._func_execution_context) def comprehension_from_atom(inference_state, value, atom): bracket = atom.children[0] test_list_comp = atom.children[1] if bracket == '{': if atom.children[1].children[1] == ':': sync_comp_for = test_list_comp.children[3] if sync_comp_for.type == 'comp_for': sync_comp_for = sync_comp_for.children[1] return DictComprehension( inference_state, value, sync_comp_for_node=sync_comp_for, key_node=test_list_comp.children[0], value_node=test_list_comp.children[2], ) else: cls = SetComprehension elif bracket == '(': cls = GeneratorComprehension elif bracket == '[': cls = ListComprehension sync_comp_for = test_list_comp.children[1] if sync_comp_for.type == 'comp_for': sync_comp_for = sync_comp_for.children[1] return cls( inference_state, defining_context=value, sync_comp_for_node=sync_comp_for, entry_node=test_list_comp.children[0], ) class ComprehensionMixin: @inference_state_method_cache() def _get_comp_for_context(self, parent_context, comp_for): return CompForContext(parent_context, comp_for) def _nested(self, comp_fors, parent_context=None): comp_for = comp_fors[0] is_async = comp_for.parent.type == 'comp_for' input_node = comp_for.children[3] parent_context = parent_context or self._defining_context input_types = parent_context.infer_node(input_node) cn = ContextualizedNode(parent_context, input_node) iterated = input_types.iterate(cn, is_async=is_async) exprlist = comp_for.children[1] for i, lazy_value in enumerate(iterated): types = lazy_value.infer() dct = unpack_tuple_to_dict(parent_context, types, exprlist) context = self._get_comp_for_context( parent_context, comp_for, ) with context.predefine_names(comp_for, dct): try: yield from self._nested(comp_fors[1:], context) except IndexError: iterated = context.infer_node(self._entry_node) if self.array_type == 'dict': yield iterated, context.infer_node(self._value_node) else: yield iterated @inference_state_method_cache(default=[]) @to_list def _iterate(self): comp_fors = tuple(get_sync_comp_fors(self._sync_comp_for_node)) yield from self._nested(comp_fors) def py__iter__(self, contextualized_node=None): for set_ in self._iterate(): yield LazyKnownValues(set_) def __repr__(self): return "<%s of %s>" % (type(self).__name__, self._sync_comp_for_node) class _DictMixin: def _get_generics(self): return tuple(c_set.py__class__() for c_set in self.get_mapping_item_values()) class Sequence(LazyAttributeOverwrite, IterableMixin): api_type = 'instance' @property def name(self): return compiled.CompiledValueName(self, self.array_type) def _get_generics(self): return (self.merge_types_of_iterate().py__class__(),) @inference_state_method_cache(default=()) def _cached_generics(self): return self._get_generics() def _get_wrapped_value(self): from jedi.inference.gradual.base import GenericClass from jedi.inference.gradual.generics import TupleGenericManager klass = compiled.builtin_from_name(self.inference_state, self.array_type) c, = GenericClass( klass, TupleGenericManager(self._cached_generics()) ).execute_annotation() return c def py__bool__(self): return None # We don't know the length, because of appends. @safe_property def parent(self): return self.inference_state.builtins_module def py__getitem__(self, index_value_set, contextualized_node): if self.array_type == 'dict': return self._dict_values() return iterate_values(ValueSet([self])) class _BaseComprehension(ComprehensionMixin): def __init__(self, inference_state, defining_context, sync_comp_for_node, entry_node): assert sync_comp_for_node.type == 'sync_comp_for' super().__init__(inference_state) self._defining_context = defining_context self._sync_comp_for_node = sync_comp_for_node self._entry_node = entry_node class ListComprehension(_BaseComprehension, Sequence): array_type = 'list' def py__simple_getitem__(self, index): if isinstance(index, slice): return ValueSet([self]) all_types = list(self.py__iter__()) with reraise_getitem_errors(IndexError, TypeError): lazy_value = all_types[index] return lazy_value.infer() class SetComprehension(_BaseComprehension, Sequence): array_type = 'set' class GeneratorComprehension(_BaseComprehension, GeneratorBase): pass class _DictKeyMixin: # TODO merge with _DictMixin? def get_mapping_item_values(self): return self._dict_keys(), self._dict_values() def get_key_values(self): # TODO merge with _dict_keys? return self._dict_keys() class DictComprehension(ComprehensionMixin, Sequence, _DictKeyMixin): array_type = 'dict' def __init__(self, inference_state, defining_context, sync_comp_for_node, key_node, value_node): assert sync_comp_for_node.type == 'sync_comp_for' super().__init__(inference_state) self._defining_context = defining_context self._sync_comp_for_node = sync_comp_for_node self._entry_node = key_node self._value_node = value_node def py__iter__(self, contextualized_node=None): for keys, values in self._iterate(): yield LazyKnownValues(keys) def py__simple_getitem__(self, index): for keys, values in self._iterate(): for k in keys: # Be careful in the future if refactoring, index could be a # slice object. if k.get_safe_value(default=object()) == index: return values raise SimpleGetItemNotFound() def _dict_keys(self): return ValueSet.from_sets(keys for keys, values in self._iterate()) def _dict_values(self): return ValueSet.from_sets(values for keys, values in self._iterate()) @publish_method('values') def _imitate_values(self, arguments): lazy_value = LazyKnownValues(self._dict_values()) return ValueSet([FakeList(self.inference_state, [lazy_value])]) @publish_method('items') def _imitate_items(self, arguments): lazy_values = [ LazyKnownValue( FakeTuple( self.inference_state, [LazyKnownValues(key), LazyKnownValues(value)] ) ) for key, value in self._iterate() ] return ValueSet([FakeList(self.inference_state, lazy_values)]) def exact_key_items(self): # NOTE: A smarter thing can probably done here to achieve better # completions, but at least like this jedi doesn't crash return [] class SequenceLiteralValue(Sequence): _TUPLE_LIKE = 'testlist_star_expr', 'testlist', 'subscriptlist' mapping = {'(': 'tuple', '[': 'list', '{': 'set'} def __init__(self, inference_state, defining_context, atom): super().__init__(inference_state) self.atom = atom self._defining_context = defining_context if self.atom.type in self._TUPLE_LIKE: self.array_type = 'tuple' else: self.array_type = SequenceLiteralValue.mapping[atom.children[0]] """The builtin name of the array (list, set, tuple or dict).""" def _get_generics(self): if self.array_type == 'tuple': return tuple(x.infer().py__class__() for x in self.py__iter__()) return super()._get_generics() def py__simple_getitem__(self, index): """Here the index is an int/str. Raises IndexError/KeyError.""" if isinstance(index, slice): return ValueSet([self]) else: with reraise_getitem_errors(TypeError, KeyError, IndexError): node = self.get_tree_entries()[index] if node == ':' or node.type == 'subscript': return NO_VALUES return self._defining_context.infer_node(node) def py__iter__(self, contextualized_node=None): """ While values returns the possible values for any array field, this function returns the value for a certain index. """ for node in self.get_tree_entries(): if node == ':' or node.type == 'subscript': # TODO this should probably use at least part of the code # of infer_subscript_list. yield LazyKnownValue(Slice(self._defining_context, None, None, None)) else: yield LazyTreeValue(self._defining_context, node) yield from check_array_additions(self._defining_context, self) def py__len__(self): # This function is not really used often. It's more of a try. return len(self.get_tree_entries()) def get_tree_entries(self): c = self.atom.children if self.atom.type in self._TUPLE_LIKE: return c[::2] array_node = c[1] if array_node in (']', '}', ')'): return [] # Direct closing bracket, doesn't contain items. if array_node.type == 'testlist_comp': # filter out (for now) pep 448 single-star unpacking return [value for value in array_node.children[::2] if value.type != "star_expr"] elif array_node.type == 'dictorsetmaker': kv = [] iterator = iter(array_node.children) for key in iterator: if key == "**": # dict with pep 448 double-star unpacking # for now ignoring the values imported by ** next(iterator) next(iterator, None) # Possible comma. else: op = next(iterator, None) if op is None or op == ',': if key.type == "star_expr": # pep 448 single-star unpacking # for now ignoring values imported by * pass else: kv.append(key) # A set. else: assert op == ':' # A dict. kv.append((key, next(iterator))) next(iterator, None) # Possible comma. return kv else: if array_node.type == "star_expr": # pep 448 single-star unpacking # for now ignoring values imported by * return [] else: return [array_node] def __repr__(self): return "<%s of %s>" % (self.__class__.__name__, self.atom) class DictLiteralValue(_DictMixin, SequenceLiteralValue, _DictKeyMixin): array_type = 'dict' def __init__(self, inference_state, defining_context, atom): # Intentionally don't call the super class. This is definitely a sign # that the architecture is bad and we should refactor. Sequence.__init__(self, inference_state) self._defining_context = defining_context self.atom = atom def py__simple_getitem__(self, index): """Here the index is an int/str. Raises IndexError/KeyError.""" compiled_value_index = compiled.create_simple_object(self.inference_state, index) for key, value in self.get_tree_entries(): for k in self._defining_context.infer_node(key): for key_v in k.execute_operation(compiled_value_index, '=='): if key_v.get_safe_value(): return self._defining_context.infer_node(value) raise SimpleGetItemNotFound('No key found in dictionary %s.' % self) def py__iter__(self, contextualized_node=None): """ While values returns the possible values for any array field, this function returns the value for a certain index. """ # Get keys. types = NO_VALUES for k, _ in self.get_tree_entries(): types |= self._defining_context.infer_node(k) # We don't know which dict index comes first, therefore always # yield all the types. for _ in types: yield LazyKnownValues(types) @publish_method('values') def _imitate_values(self, arguments): lazy_value = LazyKnownValues(self._dict_values()) return ValueSet([FakeList(self.inference_state, [lazy_value])]) @publish_method('items') def _imitate_items(self, arguments): lazy_values = [ LazyKnownValue(FakeTuple( self.inference_state, (LazyTreeValue(self._defining_context, key_node), LazyTreeValue(self._defining_context, value_node)) )) for key_node, value_node in self.get_tree_entries() ] return ValueSet([FakeList(self.inference_state, lazy_values)]) def exact_key_items(self): """ Returns a generator of tuples like dict.items(), where the key is resolved (as a string) and the values are still lazy values. """ for key_node, value in self.get_tree_entries(): for key in self._defining_context.infer_node(key_node): if is_string(key): yield key.get_safe_value(), LazyTreeValue(self._defining_context, value) def _dict_values(self): return ValueSet.from_sets( self._defining_context.infer_node(v) for k, v in self.get_tree_entries() ) def _dict_keys(self): return ValueSet.from_sets( self._defining_context.infer_node(k) for k, v in self.get_tree_entries() ) class _FakeSequence(Sequence): def __init__(self, inference_state, lazy_value_list): """ type should be one of "tuple", "list" """ super().__init__(inference_state) self._lazy_value_list = lazy_value_list def py__simple_getitem__(self, index): if isinstance(index, slice): return ValueSet([self]) with reraise_getitem_errors(IndexError, TypeError): lazy_value = self._lazy_value_list[index] return lazy_value.infer() def py__iter__(self, contextualized_node=None): return self._lazy_value_list def py__bool__(self): return bool(len(self._lazy_value_list)) def __repr__(self): return "<%s of %s>" % (type(self).__name__, self._lazy_value_list) class FakeTuple(_FakeSequence): array_type = 'tuple' class FakeList(_FakeSequence): array_type = 'tuple' class FakeDict(_DictMixin, Sequence, _DictKeyMixin): array_type = 'dict' def __init__(self, inference_state, dct): super().__init__(inference_state) self._dct = dct def py__iter__(self, contextualized_node=None): for key in self._dct: yield LazyKnownValue(compiled.create_simple_object(self.inference_state, key)) def py__simple_getitem__(self, index): with reraise_getitem_errors(KeyError, TypeError): lazy_value = self._dct[index] return lazy_value.infer() @publish_method('values') def _values(self, arguments): return ValueSet([FakeTuple( self.inference_state, [LazyKnownValues(self._dict_values())] )]) def _dict_values(self): return ValueSet.from_sets(lazy_value.infer() for lazy_value in self._dct.values()) def _dict_keys(self): return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__()) def exact_key_items(self): return self._dct.items() def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self._dct) class MergedArray(Sequence): def __init__(self, inference_state, arrays): super().__init__(inference_state) self.array_type = arrays[-1].array_type self._arrays = arrays def py__iter__(self, contextualized_node=None): for array in self._arrays: yield from array.py__iter__() def py__simple_getitem__(self, index): return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__()) def unpack_tuple_to_dict(context, types, exprlist): """ Unpacking tuple assignments in for statements and expr_stmts. """ if exprlist.type == 'name': return {exprlist.value: types} elif exprlist.type == 'atom' and exprlist.children[0] in ('(', '['): return unpack_tuple_to_dict(context, types, exprlist.children[1]) elif exprlist.type in ('testlist', 'testlist_comp', 'exprlist', 'testlist_star_expr'): dct = {} parts = iter(exprlist.children[::2]) n = 0 for lazy_value in types.iterate(ContextualizedNode(context, exprlist)): n += 1 try: part = next(parts) except StopIteration: analysis.add(context, 'value-error-too-many-values', part, message="ValueError: too many values to unpack (expected %s)" % n) else: dct.update(unpack_tuple_to_dict(context, lazy_value.infer(), part)) has_parts = next(parts, None) if types and has_parts is not None: analysis.add(context, 'value-error-too-few-values', has_parts, message="ValueError: need more than %s values to unpack" % n) return dct elif exprlist.type == 'power' or exprlist.type == 'atom_expr': # Something like ``arr[x], var = ...``. # This is something that is not yet supported, would also be difficult # to write into a dict. return {} elif exprlist.type == 'star_expr': # `a, *b, c = x` type unpackings # Currently we're not supporting them. return {} raise NotImplementedError class Slice(LazyValueWrapper): def __init__(self, python_context, start, stop, step): self.inference_state = python_context.inference_state self._context = python_context # All of them are either a Precedence or None. self._start = start self._stop = stop self._step = step def _get_wrapped_value(self): value = compiled.builtin_from_name(self._context.inference_state, 'slice') slice_value, = value.execute_with_values() return slice_value def get_safe_value(self, default=sentinel): """ Imitate CompiledValue.obj behavior and return a ``builtin.slice()`` object. """ def get(element): if element is None: return None result = self._context.infer_node(element) if len(result) != 1: # For simplicity, we want slices to be clear defined with just # one type. Otherwise we will return an empty slice object. raise IndexError value, = result return get_int_or_none(value) try: return slice(get(self._start), get(self._stop), get(self._step)) except IndexError: return slice(None, None, None)